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3.2 Domains and Fields

What special kinds of commutative rings warrant recognition? We
first name a distinguish collection of elements.

Definition 3.2.0. A ring element is a unit if it has a multiplicative
inverse. The set of units in a ring 𝑅 is denoted by 𝑅×.

The set 𝑅× of units in any ring form a
group: multiplication is an associated
binary operation with an identity such
each element has an inverse.

Example 3.2.1. We have ℤ× = {1,−1}.
Example 3.2.2. For any positive integer 𝑛, the units in the ring
M𝑛,𝑛(𝑅) of (𝑛 × 𝑛)‑matrix with entries in a commutative ring 𝑅 are
the invertible matrices; GL𝑛(𝑅) = M𝑛,𝑛(𝑅)×
Remark 3.2.3. Lemma 2.2.2 and Definition 2.3.0 show that, for any
positive integer ℓ, we have(ℤ/⟨ℓ⟩)× = {[𝑛]ℓ | 𝑛 ∈ ℕ, 1 ⩽ 𝑛 < ℓ, and gcd(𝑛, ℓ) = 1}
and ||(ℤ/⟨ℓ⟩)×|| = 𝜙(ℓ). For instance, we have (ℤ/⟨6⟩)× = {1, 5} and(ℤ/⟨9⟩)× = {1, 2, 4, 5, 7, 8}.
Problem 3.2.4. Verify that (ℤ[i])× = {1,−1, i,−i}.
Solution. Suppose that a Gaussian integer 𝑎 + 𝑏 i is a unit. There
exists a Gaussian integer 𝑐 + 𝑑 i such that (𝑎 + 𝑏 i)(𝑐 + 𝑑 i) = 1. It
follows that (𝑎2 + 𝑏2)(𝑐2 + 𝑑2) = |𝑎 + 𝑏 i|2 |𝑐 + 𝑑 i|2 = 1. Since the
nonnegative integer 𝑎2 +𝑏2 divides 1, we see that either 𝑎2 = 1 and𝑏2 = 0, or 𝑎2 = 0 and 𝑏2 = 1. We deduce that ±1 and ±i are the
only Gaussian units.

Definition 3.2.5. A field is a nonzero commutative ring in which
every nonzero ring element is a unit.

Richard Dedekind used the term
“Zahlenkörper” (body of numbers) for
we would call a division ring rather
than a field as it does not require that
multiplication be commutative. In
1893, Eliakim Moore was apparently
the first person to use the English
word “field” in its modern sense.

Example 3.2.6. Some of our favourite sets of numbers includingℚ, ℝ, and ℂ are fields. However, the ring ℤ is not a field.
Any field can be used as the scalars
for a vector space.

Definition 3.2.7. An element 𝑎 in a ring 𝑅 is nilpotent if there
exists a positive integer 𝑘 such that 𝑎𝑘 = 0.

The term “nilpotent” was first used by
Benjamin Peirce in 1870.

Lemma 3.2.8. Let 𝑅 be a commutative ring. For any nilpotent ring
element 𝑎 and any unit 𝑢 in 𝑅, the difference 𝑢 − 𝑎 is also a unit.

Proof. Since there is a positive integer 𝑘 such that 𝑎𝑘 = 0 and a
ring element 𝑣 such that 𝑢𝑣 = 1, we have(𝑢 − 𝑎)((𝑢𝑘−1 + 𝑢𝑘−2 𝑎 +⋯+ 𝑢𝑎𝑘−2 + 𝑎𝑘−1) 𝑣𝑘) = (𝑢𝑘 − 𝑎𝑘)𝑣𝑘= (𝑢𝑣)𝑘 = 1 .
Proposition 3.2.9. Let 𝑅 be a commutative ring. The units in the
polynomial ring 𝑅[𝑥] are the polynomials𝑓 = 𝑎𝑚 𝑥𝑚 + 𝑎𝑚−1 𝑥𝑚−1 +⋯+ 𝑎1 𝑥 + 𝑎0
where 𝑚 is a nonnegative integer, 𝑎0 is a unit in 𝑅, and other coefficients𝑎1, 𝑎2, … , 𝑎𝑚 are nilpotent.
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Proof. As 𝑓 is a unit, there is a 𝑔 = 𝑏𝑛 𝑥𝑛+𝑏𝑛−1 𝑥𝑛−1+⋯+𝑏1 𝑥+𝑏0
such that 𝑓𝑔 = 1. The definition of multiplication on 𝑅[𝑥] gives𝑎𝑚 𝑏𝑛 = 0 coefficients of 𝑥𝑚+𝑛𝑎𝑚−1 𝑏𝑛 + 𝑎𝑚 𝑏𝑛−1 = 0 coefficients of 𝑥𝑚+𝑛−1⋮𝑘∑𝑗=0 𝑎𝑚−𝑘+𝑗 𝑏𝑛−𝑗 = 0 coefficients of 𝑥𝑚+𝑛−𝑘⋮𝑎0 𝑏1 + 𝑎1 𝑏0 = 0 coefficients of 𝑥1𝑎0 𝑏0 = 1 coefficients of 𝑥0
The last equation shows that 𝑎0 and 𝑏0 are units in 𝑅.

When 𝑚 > 0, we next prove, by strong induction on 𝑘, that𝑎𝑘+1𝑚 𝑏𝑛−𝑘 = 0 for any 0 ⩽ 𝑘 ⩽ 𝑛. The equation 𝑎𝑚 𝑏𝑛 = 0 is the
base case. For all 0 ⩽ 𝑗 < 𝑘, assume that 𝑎𝑗+1𝑚 𝑏𝑛−𝑗 = 0. Multiplying
the (𝑚+ 𝑛− 𝑘)‑th equation by 𝑎𝑘𝑚, the induction hypothesis gives

0 = 𝑎𝑘𝑚( 𝑘∑𝑗=0 𝑎𝑚−𝑘+𝑗 𝑏𝑛−𝑗)= 𝑘∑𝑗=0 𝑎𝑚−𝑘+𝑗 𝑎𝑘−𝑗−1𝑚 (𝑎𝑗+1𝑚 𝑏𝑛−𝑗)= 𝑎𝑘+1𝑚 𝑏𝑛−𝑘 .
Since 𝑎𝑛+1𝑚 𝑏0 = 0 and 𝑏0 is a unit, we deduce that 𝑎𝑚 is nilpotent.

Lastly, we establish, by induction on 𝑚, that the ring elements𝑎𝑚, 𝑎𝑚−1, … , 𝑎1 are all nilpotent. The assertion is vacuous when𝑚 = 0. Assume that 𝑚 > 0. Since 𝑓 is a unit and the previous
paragraph proves that 𝑎𝑚 𝑥𝑚 is nilpotent, Lemma 3.2.8 shows
that 𝑓 − 𝑎𝑚 𝑥𝑚 is a unit. The induction hypothesis shows that𝑎𝑚−1, 𝑎𝑚−2, … , 𝑎1 are nilpotent.

Definition 3.2.10. A ring 𝑅 is a domain if its nonzero and the
product of two nonzero elements in 𝑅 is nonzero.

A ring element 𝑎 is a zero divisor if
there exists a nonzero ring element 𝑏
such that 𝑎𝑏 = 𝑏𝑎 = 0. Hence, a
domain is a ring in which the only
zero divisor is 0.Proposition 3.2.11. Every field is a domain.

Proof. Let 𝑎 and 𝑏 be elements of a field. When 𝑎𝑏 = 0 and 𝑏 ≠ 0,
we have 𝑎 = 𝑎1 = 𝑎 (𝑏𝑏−1) = (𝑎𝑏) 𝑏−1 = 0𝑏−1 = 0.

Proposition 3.2.12. Any finite domain is a field.

Proof. Let 𝑅 be a finite domain and consider 𝑎 a nonzero ring
element. The ring 𝑅 being a domain implies that the map 𝑥 ↦ 𝑎𝑥
is injective. The ring 𝑅 being finite, it follows that this map is also
surjective. Hence, there exists a ring element 𝑏 in 𝑅 such that𝑎𝑏 = 1. Since 𝑎 was arbitrary, the ring 𝑅 is a field.

Proposition 3.2.13. Let ℓ be a nonnegative integer. The quotient ringℤ/⟨ℓ⟩ is a domain if and only if ℓ is a prime integer.

Combining Proposition 3.2.12 and
Proposition 3.2.13, we see that ℤ/⟨ℓ⟩ is
a field if and only if the generator ℓ is
a positive prime integer. For a prime
number 𝑝, the finite field ℤ/⟨𝑝⟩ is
frequently denoted by 𝔽𝑝.Proof.⇐: Suppose that ℓ is prime. For any integers 𝑚 and 𝑛 such that𝑚𝑛 ≡ 0 mod ℓ, it follows ℓ divides 𝑚 or ℓ divides 𝑛, Thus, the

quotient ring ℤ/⟨ℓ⟩ is a domain.⇒: Suppose that ℓ is not prime. Hence, there exists positive inte‑
gers 𝑚 and 𝑛 such that ℓ = 𝑚𝑛, 1 < 𝑚 < ℓ, and 1 < 𝑛 < ℓ. It
follows that 𝑚≡ 0 mod ℓ and 𝑛 ≡ 0 mod ℓ but 𝑚𝑛 ≡ 0 mod ℓ.
Therefore, the quotient ring ℤ/⟨ℓ⟩ is not a domain.
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Exercises

Problem 3.2.14. In a commutative ring, demonstrate that the set
of nilpotent elements forms a subring.

Problem 3.2.15. Establish that any subring of a domain is also a
domain.

Problem 3.2.16. Let 𝔽3 ∶= ℤ/ ⟨3⟩ be the field with 3 elements.
Consider the commutative ring𝔽3[i]∶= {𝑎 + 𝑏 i || 𝑎, 𝑏 ∈ 𝔽3 and i2 ≡ −1 ≡ 2 mod 3} .
Verify that 𝔽3[i] is a field.

Problem 3.2.17. Let 𝔽5 ∶= ℤ/ ⟨5⟩ be the field with 5 elements.
Consider the commutative ring𝔽5[i]∶= {𝑎 + 𝑏 i || 𝑎, 𝑏 ∈ 𝔽5 and i2 ≡ −1 ≡ 4 mod 5} .
Confirm that 𝔽5[i] is not a domain.

Problem 3.2.18. Assume that the commutative ring 𝑅 is a domain.
Prove that 𝑅 has characteristic 0 or has characteristic 𝑝 where 𝑝
is a positive prime number. When 𝑅 has characteristic 0, show
that it has a subring isomorphic to ℤ. When 𝑅 has characteristic 𝑝,
show that it has a subring isomorphic to ℤ/⟨𝑝⟩.
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Together with the set of integers, polynomials whose coefficient
lie in a field form the most important example of a commutative
ring. Polynomial rings are ubiquitous in modern mathematics and
indispensable in algebra and algebraic geometry.

The hybrid word “polynomial”
combines the Greek prefix poly,
meaning ‘many’ with the Latin suffix
nomen meaning ‘name’.

Throughout the chapter, 𝑅 denotes a commutative ring.

4.0 Polynomial Roots

What attributes distinguish polynomials? Polynomials in a single
indeterminate come with some terminology.

Definition 4.0.0. For any nonzero element 𝑓 in the polynomial
ring 𝑅[𝑥], the degree, denoted by deg(𝑓), is the largest nonnegative
integer 𝑘 such that the coefficient 𝑎𝑘 of the monomial 𝑥𝑘 in 𝑓 is
nonzero. The nonzero element 𝑎𝑚 in 𝑅 satisfying 𝑚 = deg(𝑓) is
the leading coefficient. A monic polynomial is one whose leading
coefficient is 1𝑅.

Example 4.0.1. The polynomial 9𝑥3 − 3𝑥2 + 5𝑥 − 1 has degree 3
and leading coefficient 9, so it is not monic. The polynomial 𝑥17−1
is monic and has degree 17. A polynomial of degree 0 is a nonzero
element in the coefficient ring 𝑅.

Table 4.1: Low degree polynomials
have distinctive names

Degree Name1 linear2 quadratic3 cubic4 quartic5 quintic6 sextic7 septic8 octic

Lemma 4.0.2. Let 𝑓 and 𝑔 be two nonzero polynomials in 𝑅[𝑥].⦁ When deg(𝑓) ≠ deg(𝑔), the sum 𝑓 + 𝑔 is nonzero and its degree is
deg(𝑓 + 𝑔) = max (deg(𝑓),deg(𝑔)). When deg(𝑓) = deg(𝑔), the
degree of the sum satisfies deg(𝑓 + 𝑔) ⩽ deg(𝑓).⦁ We have deg(𝑓𝑔) ⩽ deg(𝑓) + deg(𝑔) and equality holds if the
leading coefficient of 𝑓 or 𝑔 is not a zero divisor in 𝑅.

Proof. Let 𝑎𝑚 be the leading coefficient of 𝑓 and let 𝑏𝑛 be the
leading coefficient of 𝑔. It follows that the leading coefficient the
sum 𝑓 + 𝑔 is 𝑎𝑚 when 𝑚 > 𝑛 and 𝑏𝑛 with 𝑚 < 𝑛. When 𝑚 = 𝑛, the
coefficient of the monomial 𝑥𝑚 in the sum 𝑓 + 𝑔 is 𝑎𝑚 + 𝑏𝑛 and
the coefficients of all monomials of higher‑degree are zero, so we
deduce that deg(𝑓+𝑔) ⩽ 𝑚. The coefficient of the monomial 𝑥𝑚+𝑛
in the product 𝑓𝑔 is 𝑎𝑚 𝑏𝑛 and the coefficients of all monomials of
higher‑degree are zero, so deg(𝑓𝑔) ⩽ deg(𝑓) + deg(𝑔).
Proposition 4.0.3. For any domain 𝑅, the polynomial ring 𝑅[𝑥] is also
a domain and the units in 𝑅[𝑥] are the units in 𝑅.

The only nilpotent element in a
commutative domain is 0, so
Proposition 3.2.9 proves this assertion
when 𝑅 is commutative.

Proof. Suppose that 𝑓 and 𝑔 are nonzero polynomials in 𝑅[𝑥].
Since deg(𝑓 𝑔) = deg(𝑓)+deg(𝑔) ⩾ 0, it follows that 𝑓𝑔 ≠ 0. When𝑓𝑔 = 1, we have deg(𝑓) + deg(𝑔) = deg(1) = 0. Hence, both 𝑓 and𝑔 are polynomials of degree 0 and thereby elements of 𝑅.
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Theorem 4.0.4 (Division with remainder). Consider two nonzero
elements 𝑓 and 𝑔 in the ring 𝑅[𝑥] having degrees 𝑚 and 𝑛 respectively.
Let 𝑎𝑚 be the leading coefficient of the polynomial 𝑓 and set𝑘∶= max(𝑛 −𝑚+ 1, 0) .
There exists polynomials 𝑞 and 𝑟 in 𝑅[𝑥] such that 𝑎𝑘𝑚 𝑔 = 𝑞𝑓 + 𝑟 and0 ⩽ deg(𝑟) < 𝑚 or 𝑟 = 0. When 𝑎𝑚 is a not a zero divisor in 𝑅, the
polynomials 𝑞 and 𝑟 are uniquely determined by these properties.

Proof. We treat existence and uniqueness separately.
(existence) When 𝑛 < 𝑚, simply take 𝑞 ∶= 0 and 𝑟 ∶= 𝑎𝑘𝑚 𝑔. When𝑛 ⩾ 𝑚, we proceed by induction on 𝑛. When 𝑛 = 0, we have𝑚 = 0, 𝑘 = 1, and 𝑓 = 𝑎𝑚, so we may take 𝑞 ∶= 𝑔 and 𝑟 ∶= 0

for the base case. Assume 𝑛 > 0 and let 𝑏𝑛 denote the leading
coefficient of 𝑔. It follows that deg(𝑎𝑘𝑚 𝑔 − 𝑎𝑘−1𝑚 𝑏𝑛 𝑥𝑛−𝑚𝑓) < 𝑛.
The induction hypothesis implies that, there exists 𝑝 and 𝑟 in
the ring 𝑅[𝑥] such that 𝑎𝑘−1𝑚 (𝑎𝑚 𝑔 − 𝑏𝑛𝑥𝑛−𝑚𝑓) = 𝑝𝑓 + 𝑟 and
deg(𝑟) < 𝑚 or 𝑟 = 0, so 𝑎𝑘𝑚 𝑔 = (𝑎𝑘−1𝑚 𝑏𝑛𝑥𝑛−𝑚 + 𝑝)𝑓 + 𝑟. Setting𝑞∶= 𝑎𝑘−1𝑚 𝑏𝑛𝑥𝑛−𝑚 + 𝑝 completes the induction step.

(uniqueness) Consider polynomials 𝑞, 𝑝, 𝑟, 𝑠 in 𝑅[𝑥] such that𝑎𝑘𝑚 𝑔 = 𝑞𝑓 + 𝑟 = 𝑝𝑓 + 𝑠, deg(𝑟) < 𝑚, and deg(𝑠) < 𝑚. It
follows that (𝑞 − 𝑝)𝑓 = (𝑠 − 𝑟) and deg(𝑠 − 𝑟) < 𝑚. Since 𝑎𝑚 is
not a zero divisor, we have 𝑚+ deg(𝑞− 𝑝) = deg(𝑠 − 𝑟) < 𝑚 and
we conclude that 𝑞 = 𝑝 and 𝑟 = 𝑠.

Repackaging the induction leads to long division.

Problem 4.0.5. For the polynomials 𝑔 = 3𝑥4−12𝑥3−13𝑥2+59𝑥+1
and 𝑓 = 𝑥2 − 2𝑥 − 8 in ℚ[𝑥], find the quotient and remainder for
division of 𝑔 by 𝑓.

Since the leading coefficient of 𝑓 is a
unit in the coefficient ring, we do not
need to multiply 𝑔 by a power of it.

Solution. Long division gives 3𝑥2 −6𝑥−1𝑥2 − 2𝑥 − 8 3𝑥4−12𝑥3−13𝑥2+59𝑥+13𝑥4 −6𝑥3−24𝑥2−6𝑥3+11𝑥2+59𝑥−6𝑥2+12𝑥2+48𝑥−𝑥2+11𝑥+1−𝑥2 +2𝑥+89𝑥−7
so 𝑔 // 𝑓 = 3𝑥2 − 6𝑥 − 1 and 𝑔 % 𝑓 = 9𝑥 − 7.

Problem 4.0.6. For the polynomials 𝑔 = 𝑥5 − 9𝑥3 + 4𝑥2 + 2 and𝑓 = 6𝑥3 + 1 in ℤ[𝑥], find the quotient and remainder for division
of 𝑔 by 𝑓.

Solution. Since deg(𝑔) − deg(𝑓) + 1 = 3, we divide 63 𝑔 by 𝑓. Long
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division gives 36𝑥2+0𝑥−3246𝑥3 + 1 216𝑥5+0𝑥4−1944𝑥3+864𝑥2+0𝑥+432216𝑥5+0𝑥4 +0𝑥3 +36𝑥2−1944𝑥3+838𝑥2+0𝑥+432−1944𝑥3 +0𝑥2+0𝑥−324838𝑥2+0𝑥+756
so (63 𝑔) // 𝑓 = 36𝑥2 − 324 and (63 𝑔) % 𝑓 = 838𝑥2 + 756.

Definition 4.0.7. For any ring element 𝑏 ∈ 𝑅, the evaluation map
ev𝑏∶𝑅[𝑥]→𝑅 is defined by

From the definiton of addition and
multiplication on 𝑅[𝑥], it follows that,
for any ring element 𝑏 ∈ 𝑅 and any
polynomials 𝑓 and 𝑔 in 𝑅[𝑥], we have
ev𝑏(𝑓 + 𝑔) = ev𝑏(𝑓) + ev𝑏(𝑔),
ev𝑏(𝑓 𝑔) = ev𝑏(𝑓) ev𝑏(𝑔), and
ev𝑏(1𝑅[𝑥]) = 1𝑅 .

ev𝑏(𝑎𝑚 𝑥𝑚 + 𝑎𝑚−1 𝑥𝑚−1 +⋯+ 𝑎0) = 𝑎𝑚 𝑏𝑚 + 𝑎𝑚−1 𝑏𝑚−1 +⋯+ 𝑏0 .
Definition 4.0.8. A root of polynomial 𝑓 in the ring 𝑅[𝑥] is a ring
element 𝑏 in 𝑅 such that ev𝑏(𝑓) = 𝑓(𝑏) = 0.

Corollary 4.0.9. For any polynomial 𝑔 in the ring 𝑅[𝑥], the ring ele‑
ment 𝑏 in 𝑅 is a root of 𝑔 if and only if 𝑥 − 𝑏 is a divisor of 𝑔.

Proof. Set 𝑓 ∶= 𝑥 − 𝑏. Division with remainder implies that there
exists polynomials 𝑞 and 𝑟 in the ring 𝑅[𝑥] such that 𝑔 = 𝑞𝑓 + 𝑟
and deg(𝑟) < 1 or 𝑟 = 0. It follows that 𝑟 ∈ 𝑅. Evaluating at 𝑏
yields ev𝑏(𝑔) = ev𝑏(𝑞) ev𝑏(𝑓) + ev𝑏(𝑟) = ev𝑏(𝑞) (0) + 𝑟 = 𝑟, so we
obtain 𝑔 = 𝑞𝑓 + ev𝑏(𝑔). Thus, the remainder 𝑟 equals 0 if and only
if ev𝑏(𝑔) = 0.

Exercises

Problem 4.0.10. Let 𝑚 and 𝑛 be two positive integers such that 𝑚
divides 𝑛. Verify that the polynomial 𝑥𝑚 − 1 divides 𝑥𝑛 − 1.

Problem 4.0.11. Let 𝑅∶= ℤ/⟨6⟩. For the polynomials𝑔 = 𝑥5 + 3𝑥3 + 5𝑥2 + 2𝑥 + 1 and 𝑓 = 2𝑥2 + 4𝑥 + 1
in 𝑅[𝑥], find a quotient and remainder for division of 𝑔 by 𝑓.

Problem 4.0.12. Let 𝐾 be a field. Consider two polynomials 𝑓 and𝑔 in the ring 𝐾[𝑥] such that deg(𝑔) > 0. Confirm that there exist
unique polynomials ℎ0, ℎ1, … , ℎ𝑑 in the ring 𝐾[𝑥] such that𝑓 = ℎ0 + ℎ1 𝑔 + ℎ2 𝑔2 + ℎ3 𝑔3 +⋯+ ℎ𝑑 𝑔𝑑
and deg(ℎ𝑗) < deg(𝑔) for all 1 ⩽ 𝑗 ⩽ 𝑑.
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4.1 Multiplicity of a root

What does it mean to have a multiple root? To obtain the deepest
insights, we need count the roots of a polynomial correctly.

Proposition 4.1.0. Let 𝑓 be a polynomial in 𝑅[𝑥] and let 𝑏 be a ring
element in the coefficient ring 𝑅. For any nonnegative integer 𝑘, the
following are equivalent.
(a) The polynomial 𝑓 is divisible by (𝑥 − 𝑏)𝑘 but not by (𝑥 − 𝑎)𝑘+1.
(b) There is a polynomial 𝑔 in the ring 𝑅[𝑥] such that 𝑓 = (𝑥 − 𝑏)𝑘 𝑔

and ev𝑏(𝑔) = 𝑔(𝑏) ≠ 0.
Moreover, when 𝑓 ≠ 0, there exists a unique nonnegative integer 𝑘
satisfying these conditions.

Proof.
(a) ⇒(b): Follows from Corollary 4.0.9.
(b) ⇒(a): Suppose that 𝑓 = (𝑥−𝑏)𝑘 𝑔 and 𝑔 does not have 𝑏 as root.

We see that 𝑓 is divisible by (𝑥 − 𝑏)𝑘. Assume that there exists a
polynomial ℎ in the ring 𝑅[𝑥] such that 𝑓 = (𝑥 − 𝑏)𝑘+1 ℎ. Since(𝑥−𝑏)𝑘 is not a zero divisor in 𝑅[𝑥], we would have 𝑔 = (𝑥−𝑏)ℎ
which implies that ev𝑏(𝑔) = 𝑔(𝑏) = 0 which is contradiction.

Definition 4.1.1. For any polynomial 𝑓 in the ring 𝑅[𝑥] and any
nonnegative integer 𝑘, the element 𝑏 in the coefficient ring 𝑅 is a
root of multiplicity 𝑘 if 𝑓 is divisible by (𝑥 − 𝑏)𝑘 but not (𝑥 − 𝑏)𝑘+1.
A root of multiplicity 1 is a simple root and a root of multiplicity 2
is a double root.

Any ring element 𝑏 in 𝑅 that is not a
root is a root of multiplicity 0.

Lemma 4.1.2. Let 𝑗 and 𝑘 be the multiplicities of the root 𝑏 in 𝑅 for the
polynomials 𝑓 and 𝑔 in the ring 𝑅[𝑥] respectively.⦁ The sum 𝑓 + 𝑔 has a root of multiplicity at least min(𝑗, 𝑘) at 𝑏 and is

equal to min(𝑗, 𝑘) when 𝑗 ≠ 𝑘.⦁ The product 𝑓𝑔 has a root of multiplicity at least 𝑗 + 𝑘 and it is equal
to 𝑗 + 𝑘 when 𝑅 is domain.

Proof. We may assume that 𝑗 ⩽ 𝑘. There are polynomials 𝑝 and 𝑞
in 𝑅[𝑥] such that 𝑓 = (𝑥 − 𝑏)𝑗 𝑝, ev𝑏(𝑝) ≠ 0, 𝑔 = (𝑥 − 𝑏)𝑘 𝑞, and
ev𝑏(𝑞) ≠ 0. It follows that 𝑓 + 𝑔 = (𝑥 − 𝑏)𝑗 (𝑝 + (𝑥 − 𝑏)𝑘−𝑗 𝑞).
When 𝑘 − 𝑗 > 0, the ring element 𝑏 is not a root of 𝑝 + (𝑥 − 𝑏)𝑘−𝑗 𝑞
because ev𝑏(𝑝)+(𝑏−𝑏)𝑘−1 ev𝑏(𝑞) = ev𝑏(𝑝) ≠ 0. Similarly, we have𝑓𝑔 = (𝑥 − 𝑏)𝑗+𝑘 𝑝𝑞 and ev𝑏(𝑝) ev𝑏(𝑞) ≠ 0 when 𝑅 is a domain.

Proposition 4.1.3. Let 𝑅 be a domain. Given a nonzero polynomial𝑓 in the ring 𝑅[𝑥] with distinct roots 𝑏1, 𝑏2, … , 𝑏ℓ having multiplicities𝑘1, 𝑘2, … , 𝑘ℓ, there exists a polynomial 𝑔 in 𝑅[𝑥] such that 𝑏1, 𝑏2, … , 𝑏ℓ
are not roots of 𝑔 and 𝑓 = (𝑥 − 𝑏1)𝑘1 (𝑥 − 𝑏2)𝑘2 ⋯ (𝑥 − 𝑏ℓ)𝑘ℓ 𝑔.

Proof. We proceed by induction on ℓ. The base case ℓ = 1 is
covered by Proposition 4.1.0. Suppose that𝑓 = (𝑥 − 𝑏1)𝑘1 (𝑥 − 𝑏2)𝑘2 ⋯ (𝑥 − 𝑏ℓ−1)𝑘ℓ−1 ℎ .
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Since 𝑅 is a domain and the root 𝑏ℓ is distinct from 𝑏1, 𝑏2, … , 𝑏ℓ−1,
it follows that 𝑏ℓ is not a root of the polynomial(𝑥 − 𝑏1)𝑘1 (𝑥 − 𝑏2)𝑘2 ⋯ (𝑥 − 𝑏ℓ−1)𝑘ℓ−1 .
The element 𝑏ℓ is a root of multiplicity 𝑘ℓ of the polynomial ℎ and
Proposition 4.1.0 implies that ℎ = (𝑥 − 𝑏ℓ)𝑘ℓ 𝑔 where 𝑏1, 𝑏2, … , 𝑏ℓ
are not roots of 𝑔.

Corollary 4.1.4. Let 𝑅 be a domain. Given nonzero polynomial 𝑓 in
the ring 𝑅[𝑥] of degree 𝑚, the sum of multiplicities of all the roots of 𝑓 is
at most 𝑚.

Some hypothesis on the coefficient ring is necessary.

Problem 4.1.5. Over the ring 𝑅 = ℤ/⟨2⟩ × ℤ/⟨2⟩, verify that all four
elements are roots of the polynomial 𝑥2 − 𝑥 in 𝑅[𝑥].

Table 4.2: Sums in ℤ/⟨2⟩×ℤ/⟨2⟩+ (0, 0) (1, 0) (0, 1) (1, 1)(0, 0) (0, 0) (1, 0) (0, 1) (1, 1)(1, 0) (1, 0) (0, 0) (1, 1) (0, 1)(0, 1) (0, 1) (1, 1) (0, 0) (1, 0)(1, 1) (1, 1) (0, 1) (1, 0) (0, 0)
Table 4.3: Products in ℤ/⟨2⟩×ℤ/⟨2⟩× (0, 0) (1, 0) (0, 1) (1, 1)(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)(1, 0) (0, 0) (1, 0) (0, 0) (1, 0)(0, 1) (0, 0) (0, 0) (0, 1) (0, 1)(1, 1) (0, 0) (1, 0) (0, 1) (1, 1)

Solution. Since operation on 𝑅 are defined entrywise, we have((0, 0))2 − (0, 0) = (0, 0) − (0, 0) = (0, 0) ,((1, 0))2 − (1, 0) = (1, 0) − (1, 0) = (0, 0) ,((0, 1))2 − (0, 1) = (0, 1) − (0, 1) = (0, 0) ,((1, 1))2 − (1, 1) = (1, 1) − (1, 1) = (0, 0) .
Our analysis of roots also shows that two polynomials that

agree when evaluated at a sufficiently large, but finite, number of
ring elements in a domain must be equal.

Corollary 4.1.6. Let 𝑅 be a domain and let 𝑚 be a positive integer.
Consider two nonzero polynomials 𝑓 and 𝑔 in the ring 𝑅[𝑥] of degree
at most 𝑚. If there are 𝑚 + 1 distinct elements 𝑏0, 𝑏1, … , 𝑏𝑚 in the
coefficient ring 𝑅 such that ev𝑏𝑗 (𝑓) = 𝑓(𝑏𝑗) = 𝑔(𝑏𝑗) = ev𝑏𝑗 (𝑔) for all0 ⩽ 𝑗 ⩽ 𝑚, then we have 𝑓 = 𝑔.

Proof. The polynomial ℎ∶= 𝑓 − 𝑔 has degree at most 𝑚 and has at
least 𝑚+ 1 distinct roots. Corollary 4.1.4 implies that ℎ = 0.

Proposition 4.1.7 (Lagrange Interpolation). Let 𝐾 be a field and
let 𝑏0, 𝑏1, … , 𝑏𝑚 be 𝑚 + 1 distinct elements of 𝐾. For any elements𝑐0, 𝑐1, … , 𝑐𝑚 in 𝐾, there exists a unique polynomial 𝑓 in the ring 𝐾[𝑥] of
degree at most 𝑚 such that ev𝑏𝑗 (𝑓) = 𝑓(𝑏𝑗) = 𝑐𝑗 for all 0 ⩽ 𝑗 ⩽ 𝑚.

Proof. Uniqueness follows from Corollary 4.1.6. For all 0 ⩽ 𝑗 ⩽ 𝑚,
consider the polynomial

𝑔𝑗 ∶=∏𝑘≠𝑗 (𝑥 − 𝑏𝑘)(𝑏𝑗 − 𝑏𝑘) ∈ 𝐾[𝑥] .
It follows that deg(𝑔𝑗) = 𝑚 and ev𝑏𝑘(𝑔𝑗) = 𝑔𝑗(𝑏𝑘) = 𝛿𝑗,𝑘. Thus, we
may take 𝑓∶= ∑𝑚𝑗=0 𝑐𝑗 𝑔𝑗.

The Kronecker delta is defined by

𝛿𝑗,𝑘 ∶= {1 if 𝑗 = 𝑘,0 if 𝑗 ≠ 𝑘.

In other words, 𝛿𝑗,𝑘 is the (𝑗, 𝑘)‑entry
in the identity matrix I.
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Exercises

Problem 4.1.8. Let 𝑅 be a commutative ring. The derivative opera‑
tor 𝐷∶𝑅[𝑥]→𝑅[𝑥] is defined, for any polynomial𝑓 = 𝑎𝑚 𝑥𝑚 + 𝑎𝑚−1 𝑥𝑚−1 +⋯+ 𝑎1 𝑥 + 𝑎0 ,
by 𝐷(𝑓) = (𝑚𝑎𝑚)𝑥𝑚−1 + ((𝑚− 1)𝑎𝑚−1) 𝑥𝑚−2 +⋯+ 𝑎1 .

(i) Prove that the operator 𝐷 is an 𝑅‑linear map: for any two
ring elements 𝑟 and 𝑠 in the coefficient ring 𝑅 and any two
polynomials 𝑓 and 𝑔 in the ring 𝑅[𝑥], we have𝐷(𝑟𝑓 + 𝑠𝑔) = 𝑟𝐷(𝑓) + 𝑠𝐷(𝑔) .

(ii) Prove that the operator 𝐷 satisfies the product rule: for any
two polynomials 𝑓 and 𝑔 in the ring 𝑅[𝑥], we have𝐷(𝑓𝑔) = 𝐷(𝑓) 𝑔 + 𝑓𝐷(𝑔) .

(iii) Let 𝑓 be a polynomial in 𝑅[𝑥] and let 𝑏 be an element in 𝑅.
Prove that 𝑏 is a root of 𝑓 having multiplicity 𝑘 with 𝑘 ⩾ 1 if
and only if 𝑏 is a root of the derivative 𝐷(𝑓) having multiplic‑
ity 𝑘.


