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Recognizing the maps that preserve a mathematical structure is as
essential as defining the objects themselves. Many constructions
are conveniently expressed and unified when visualized in terms
of objects and the structure‑preserving maps between them.

5.0 Ring homomorphisms

Which maps preserve ring structures? To be compatible with ring
structures, a map must align addition, multiplication, additive
identities, and multiplicative identities in the source and target.
However, the formal definition just requires the following.

The word “homomorphism” comes
from the Greek prefix homos meaning
‘same’ and the Greek suffix morphe
meaning ‘form’ or ‘shape’. This term
appeared as early as 1892 and was
attributed to the German
mathematician Felix Klein.Definition 5.0.0. Let 𝑅 and 𝑆 be two rings. A map 𝜑∶𝑅 → 𝑆 is a

ring homomorphism if, for all elements 𝑎 and 𝑏 in 𝑅, we have𝜑(𝑎 + 𝑏) = 𝜑(𝑎) + 𝜑(𝑏) , 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏) , and 𝜑(1𝑅) = 1𝑆 .
A homomorphism from a ring 𝑅 to itself an endomorphism.

We frequently omit the adjective ‘ring’
when it is clear from the context.

Problem 5.0.1. Let 𝑅 be a ring and let 𝑢 be a unit in 𝑅. Confirm
that the map 𝜑∶𝑅→𝑅 defined, for any element 𝑎 in the ring 𝑅, by𝜑(𝑎) = 𝑢𝑎𝑢−1 is an endomorphism.

When 𝑅 is a commutative ring, this
endomorphism is the identity map.

Solution. For any elements 𝑎 and 𝑏 in the ring 𝑅, we have𝜑(𝑎 + 𝑏) = 𝑢 (𝑎 + 𝑏)𝑢−1 = 𝑢𝑎𝑢−1 + 𝑢𝑏𝑢−1 = 𝜑(𝑎) + 𝜑(𝑏) ,𝜑(𝑎𝑏) = 𝑢 (𝑎𝑏)𝑢−1 = (𝑢𝑎𝑢−1) (𝑢𝑏𝑢−1) = 𝜑(𝑎)𝜑(𝑏) ,
and 𝜑(1) = 𝑢1𝑢−1 = 1, so 𝜑 is a ring homomorphism.

Example 5.0.2. Let 𝑅 be a commutative ring. For any element 𝑏 in𝑅, the evaluation map ev𝑏∶𝑅[𝑥]→𝑅 described in Definition 4.0.7 is
a ring homomorphism.

The evaluation map is not ring
homomorphism from 𝑅 × 𝑅[𝑥] to 𝑅
because there is an 𝑚 ∈ ℕ such that
ev𝑎+𝑏(𝑥𝑚) ≠ ev𝑎(𝑥𝑚) + ev𝑏(𝑥𝑚).

Ring homomorphisms implicitly preserve the additive identity.

Lemma 5.0.3. Any ring homomorphism 𝜑∶𝑅→𝑆 satisfies 𝜑(0𝑅) = 0𝑆.

Proof. The properties of the additive identity and a homomor‑
phism give 𝜑(0𝑅) = 𝜑(0𝑅 + 0𝑅) = 𝜑(0𝑅) + 𝜑(0𝑅). Adding the
additive inverse −𝜑(0𝑅) to both sides yields0𝑆 = 𝜑(0𝑅) − 𝜑(0𝑅) = 𝜑(0𝑅) + 𝜑(0𝑅) − 𝜑(0𝑅)= 𝜑(0𝑅) + 0𝑆 = 𝜑(0𝑅) .

Ring homomorphisms elevate the integers as a special source.

Problem 5.0.4. Let 𝑅 be a ring. Show that there is a unique ring
homomorphism from ℤ to 𝑅.

The identity map is the unique ring
endomorphism of ℤ.
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Solution. Let 𝜑∶ℤ→𝑅 be a ring homomorphism. For any nonnega‑
tive integer 𝑚, we first prove, by induction on 𝑚, that

𝜑(𝑚) = 𝑚1𝑅 = 1𝑅 + 1𝑅 +⋯+ 1𝑅⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟𝑚 times

= 𝑚∑𝑗=1 1𝑅 .
Lemma 5.0.3 establishes that 𝜑(0) = 0𝑅, so the base case holds.
Assume that 𝜑(𝑚) = 𝑚1𝑅. The properties of a ring homomor‑
phism give 𝜑(𝑚 + 1) = 𝜑(𝑚) + 𝜑(1) = 𝑚1𝑅 + 1𝑅 = (𝑚 + 1) 1𝑅
completing the induction step. For negative integers, we have0𝑅 = 𝜑(0) = 𝜑(𝑚−𝑚) = 𝜑(𝑚) + 𝜑(−𝑚) = 𝑚1𝑅 + 𝜑(−𝑚) .
We deduce that 𝜑(−𝑚) = −𝑚1𝑅 = 𝑚(−1𝑅). Since associativity of
addition in 𝑅 implies that (𝑚𝑛) 1𝑅 = (𝑚1𝑅)(𝑛 1𝑅), we see that the
map defined by 𝑚 ↦ 𝑚1𝑅 is also compatible with multiplication.
Therefore, the only ring homomorphism from ℤ to 𝑅 satisfies𝑚↦𝑚1𝑅 for all integers 𝑚.

Problem 5.0.5. Show that complex conjugation determines an
endomorphism of ℂ.

Solution. For any complex numbers 𝑧 = 𝑎 + 𝑏 i and 𝑤 = 𝑐 + 𝑑 i
where 𝑎, 𝑏, 𝑐, and 𝑑 are real numbers, we have𝑧 +𝑤 = (𝑎 + 𝑐) + (𝑏 + 𝑑) i = (𝑎 + 𝑐) − (𝑏 + 𝑑) i= (𝑎 − 𝑏 i) + (𝑐 − 𝑑 i) = 𝑧 +𝑤 ,𝑧𝑤 = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑑) i = (𝑎𝑐 − 𝑏𝑑) − (𝑎𝑑 + 𝑏𝑑) i= (𝑎 − 𝑏 i)(𝑐 − 𝑑 i) = 𝑧𝑤 ,
and 1 = 1 + 0 i = 1− 0 i = 1.

Problem 5.0.6. Let ℓ be a positive integer. Prove that there are no
ring homomorphisms from the quotient ℤ/⟨ℓ⟩ to ℤ.

Solution. Suppose that 𝜑∶ ℤ/⟨ℓ⟩ → ℤ is a ring homomorphism.
Lemma 5.0.3 and the definition of a ring homomorphism imply
that 𝜑([0]ℓ) = 0 and 𝜑([1]ℓ) = 1. However, we would have

ℓ = ℓ∑𝑗=1 1 =
ℓ∑𝑗=1𝜑([1]ℓ) = 𝜑( ℓ∑𝑗=1[1]ℓ) = 𝜑([ℓ]ℓ) = 𝜑([0]ℓ) = 0 ,

which is a contradiction.

The family of all ring homomorphisms has a few key properties.

Proposition 5.0.7. Let 𝑄, 𝑅, 𝑆, and 𝑇 be rings.
(i) The identity function id𝑅∶𝑅→𝑅 is a ring homomorphism.

(ii) For any two ring homomorphisms 𝜑∶𝑅 → 𝑆 and 𝜓∶ 𝑆 → 𝑇 , the
composition 𝜓𝜑∶𝑅→𝑇 is also a ring homomorphism.

(iii) For any three ring homomorphisms 𝜃∶𝑄 → 𝑅, 𝜑∶ 𝑅 → 𝑆, and𝜓∶𝑆→𝑇 , we have 𝜓(𝜑𝜃) = (𝜓𝜑)𝜃.

Proof. Let 𝑎 and 𝑏 be elements in the ring 𝑅.
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(i) Since

id𝑅(𝑎 + 𝑏) = 𝑎 + 𝑏 = id𝑅(𝑎) + id𝑅(𝑏) id𝑅(1𝑅) = 1𝑅
id𝑅(𝑎𝑏) = 𝑎𝑏 = id𝑅(𝑎) id𝑅(𝑏)

the identity map is a ring homomorphism.
(ii) Since(𝜓𝜑)(𝑎 + 𝑏) = 𝜓(𝜑(𝑎 + 𝑏)) = 𝜓(𝜑(𝑎) + 𝜑(𝑏))= 𝜓(𝜑(𝑎)) + 𝜓(𝜑(𝑏)) = (𝜓𝜑)(𝑎) + (𝜓𝜑)(𝑏)(𝜓𝜑)(𝑎𝑏) = 𝜓(𝜑(𝑎𝑏)) = 𝜓(𝜑(𝑎)𝜑(𝑏))= 𝜓(𝜑(𝑎))𝜓(𝜑(𝑏)) = (𝜓𝜑)(𝑎) (𝜓𝜑)(𝑏)(𝜓𝜑)(1𝑅) = 𝜓(𝜑(1𝑅)) = 𝜓(1𝑆) = 1𝑇

the composition 𝜓𝜑 is a ring homomorphism.
(iii) Composition of functions is associative: for any element 𝑐 in

the ring 𝑄, we have(𝜓 (𝜑𝜃))(𝑐) = 𝜓((𝜑𝜃)(𝑐)) = 𝜓(𝜑(𝜃(𝑐))) = (𝜓𝜑)(𝜃(𝑐)) = ((𝜓𝜑)𝜃)(𝑐)
so 𝜓(𝜑𝜃) = (𝜓𝜑)𝜃. .

Example 5.0.8. Let 𝑆 be a subring of a ring 𝑅. By definition, the
canonical injection 𝑆→𝑅 is a ring homomorphism.

Proposition 5.0.9. For any ring homomorphism 𝜑∶𝑅→𝑆, the image𝜑(𝑅) is a subring of 𝑆.

Proof. Let 𝑐 and 𝑑 be elements in the image 𝜑(𝑅). By definition,
there are elements 𝑎 and 𝑏 in 𝑅 such that 𝜑(𝑎) = 𝑐 and 𝜑(𝑏) = 𝑑.
Hence, the properties of a ring homomorphism give𝑐 − 𝑑 = 𝜑(𝑎) − 𝜑(𝑏) = 𝜑(𝑎 − 𝑏) and 𝑐 𝑑 = 𝜑(𝑎)𝜑(𝑏) = 𝜑(𝑎𝑏) ,
so 𝑐 − 𝑑 and 𝑐 𝑑 are both in the image 𝜑(𝑅). Since 𝜑(1𝑅) = 1𝑆,
the multiplicative identity 1𝑆 is also in the image 𝜑(𝑅). Therefore,
Proposition 3.1.2 shows that the image 𝜑(𝑅) is a subring of 𝑆.

Exercises

Problem 5.0.10. For any ring 𝑅, prove that there is a unique ring
homomorphism from 𝑅 to the zero ring. Moreover, prove that the
only ring homomorphism from the zero ring is the identity map.

Problem 5.0.11. Let 𝜑∶𝑅→𝑆 be a surjective ring homomorphism.
When 𝑅 is commutative, demonstrate that 𝑆 is also commutative.

Problem 5.0.12. Confirm that there exists a ring homomorphism
from ℤ/⟨𝑚⟩ to ℤ/⟨𝑛⟩ if and only if 𝑛 divides 𝑚.

5.1 Ideals

What is the most significant substructure of a ring? Special sub‑
sets of a ring that are closed under addition and multiplication
play an oversized role in the development of ring theory.
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Definition 5.1.0. A nonempty subset 𝐼 of a ring 𝑅 is a (two‑sided)
ideal if, for any elements 𝑓 and 𝑔 in 𝐼 and any element 𝑟 in 𝑅, the
three elements 𝑓 − 𝑔, 𝑟 𝑓, and 𝑓 𝑟 all belong to 𝐼.

In honor of Kummer’s ideal numbers,
Richard Dedekind introduced in 1876
both the concept and the term “ideal”
to number theory.

Remark 5.1.1. Let 𝐼 be an ideal in a ring 𝑅. Since 𝐼 is nonempty,
there exists a ring element 𝑓 in 𝐼, so 0𝑅 𝑓 = 0𝑅 lies in 𝐼.

Example 5.1.2. For any ring 𝑅, both 𝑅 and {0𝑅} are ideals. When
ordered by inclusion, the ring itself is the largest ideal and the
singleton {0𝑅} is the smallest.

Example 5.1.3. Let 𝑓 be a element in a ring 𝑅 such that 𝑟 𝑓 = 𝑓𝑟
for all ring elements 𝑟 in 𝑅. The set of all multiplies of 𝑟 is an ideal,
called the principal ideal generated by 𝑟 and denoted by ⟨𝑟⟩.
Lemma 5.1.4. For any family {𝐼𝑗 | 𝑗 ∈ 𝒥} of ideals in a ring 𝑅, the
intersection 𝐼 ∶= ⋂𝑗∈𝒥 𝐼𝑗 is also an ideal of 𝑅.

Proof. Since 0𝑅 ∈ 𝐼𝑗 for all 𝑗 ∈ 𝒥, we see that 𝐼 ≠ ∅. Suppose that
the ring elements 𝑓 and 𝑔 belong 𝐼. The definition of intersection
implies that 𝑓 and 𝑔 belong to the ideal 𝐼𝑗 for all 𝑗 ∈ 𝒥. Since 𝐼𝑗
is an ideal of 𝑅 for all 𝑗 ∈ 𝒥, it follows that, for all 𝑟 ∈ 𝑅, we have𝑓−𝑔 ∈ 𝐼𝑗, 𝑟 𝑓 ∈ 𝐼𝑗, and 𝑓 𝑟 ∈ 𝐼𝑗. We conclude that 𝑓−𝑔 ∈ 𝐼, 𝑟 𝑓 ∈ 𝐼,
and 𝑓 𝑟 ∈ 𝐼, which show that 𝐼 is an ideal.

Definition 5.1.5. For any nonempty subset 𝒳 of a ring 𝑅, there
exists a unique smallest ideal ⟨𝒳⟩ containing 𝒳. This ideal is the
ideal generated by 𝒳.

The ideal ⟨𝒳⟩ is the intersection of all
ideals in 𝑅 that contain 𝒳.

Problem 5.1.6. In the ring of integers, show that ⟨4, 6⟩ = ⟨2⟩.
Solution. Since −1(4) + 6 = 2, it follows that ⟨2⟩ ⊆ ⟨4, 6⟩. For any
integers 𝑎 and 𝑏, the equation 𝑎(4) + 𝑏(6) ≡ 0 mod 2 implies that⟨2⟩ ⊇ ⟨4, 6⟩, so we deduce that ⟨4, 6⟩ = ⟨2⟩
Problem 5.1.7. Let 𝑅 be a commutative ring. For any elements𝑓1, 𝑓2, … , 𝑓𝑚 in 𝑅, show that⟨𝑓1, 𝑓2, … , 𝑓𝑚⟩ = {𝑟1 𝑓1 + 𝑟2 𝑓2 +⋯+ 𝑟𝑚 𝑓𝑚 | 𝑟1, 𝑟2, … , 𝑟𝑚 ∈ 𝑅} .
Solution. We first show the given set is an ideal. Consider ele‑
ments 𝑔 and 𝑔′ from this set. There exists 𝑟1, 𝑟2, … , 𝑟𝑚, 𝑟′1, 𝑟′2, … , 𝑟′𝑚
in 𝑅 such that𝑔 = 𝑟1 𝑓1 + 𝑟2 𝑓2 +⋯+ 𝑟𝑚 𝑓𝑚 and 𝑔′ = 𝑟′1 𝑓1 + 𝑟′2 𝑓2 +⋯+ 𝑟′𝑚 𝑓𝑚 .
For any element 𝑠 in 𝑅, we have𝑔 − 𝑔′ = (𝑟1 − 𝑟′1) 𝑓1 + (𝑟2 − 𝑟′2) 𝑓2 +⋯+ (𝑟𝑚 − 𝑟′𝑚)𝑓𝑚𝑠𝑔 = (𝑠 𝑟1) 𝑓1 + (𝑠 𝑟2) 𝑓2 +⋯+ (𝑠 𝑟𝑚)𝑓𝑚𝑔 𝑠 = (𝑟1 𝑠)𝑓1 + (𝑟2 𝑠)𝑓2 +⋯+ (𝑟𝑚 𝑠)𝑓𝑚 .

It remains to show that this ideal is the smallest containing
the elements 𝑓1, 𝑓2, … , 𝑓𝑚 in 𝑅. For any elements 𝑟1, 𝑟2, … , 𝑟𝑚 in 𝑅,
any ideal that contains the elements 𝑓1, 𝑓2, … , 𝑓𝑚 will contain the
multiplies 𝑟1 𝑓1, 𝑟2 𝑓2, … , 𝑟𝑚 𝑓𝑚 and the sum 𝑟1 𝑓1+𝑟2 𝑓2+⋯+𝑟𝑚 𝑓𝑚.
Hence, any ideal containing the elements 𝑓1, 𝑓2, … , 𝑓𝑚 will contain
the given set.
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Problem 5.1.8. Describe all ideals in the ring ℤ/⟨6⟩.
Solution. The principal ideals are⟨[0]6⟩ = {[0]6} , ⟨[1]6⟩ = {[0]6, [1]6, … , [5]6} = ⟨[5]6⟩ ,⟨[3]6⟩ = {[0]6, [3]6} , ⟨[2]6⟩ = {[0]6, [2]6, [4]6} = ⟨[4]6⟩ .

We verify that these are the only ideals. Since every ideal con‑
tains [0]6, there are 25 distinct subsets to consider. Any ideal that
contains both [𝑚]6 and [𝑚±1]6 also contains [1]6 = [𝑚±1]6 ∓ [𝑚]6
and must be ⟨[1]6⟩. Any ideal that contains [2]6 = [4]6 + [4]6 or[4]6 = [2]6 + [2]6 must contain both. Given these constraints, we
see that the four principal ideals are the only ideals in ℤ/⟨6⟩.

As this tedious case study reveals, we
need better tools for analyzing the
ideals in a ring.

Problem 5.1.9. In ℤ[𝑥], verify that ⟨6, 𝑥2⟩ is not a principal ideal.

Solution. Suppose there exists a polynomial 𝑓 in ℤ[𝑥] such that⟨𝑓⟩ = ⟨6, 𝑥2⟩. There would exist polynomials 𝑔 and ℎ such that𝑓𝑔 = 6 and 𝑓ℎ = 𝑥2. The first equation would imply that
deg(𝑓) = 0 and the second equation would thereby imply that
deg(ℎ) = 2. Comparing the leading coefficients in the second
equation, we would see that 𝑓 divides 1, so 𝑓 = ±1. However, we
would have ⟨±1⟩ = ℤ[𝑥] ≠ ⟨6, 𝑥2⟩ which is a contradiction.

The next definiton and proposition start to uncover the deep
relationship between ideals and ring homomorphisms.

Definition 5.1.10. The kernel of a ring homomorphism 𝜑∶𝑅→𝑆 is
th set Ker(𝜑)∶= {𝑟 ∈ 𝑅 | 𝜑(𝑟) = 0𝑆}.
Proposition 5.1.11. For any ring homomorphism 𝜑∶𝑅→𝑆, the kernel
Ker(𝜑) is an ideal in 𝑅.

Proof. Suppose that the ring elements 𝑓 and 𝑔 belong to Ker(𝜑).
For any element 𝑟 in 𝑅, we have𝜑(𝑓 − 𝑔) = 𝜑(𝑓) − 𝜑(𝑔) = 0𝑆 − 0𝑆 = 0𝑆𝜑(𝑟𝑓) = 𝜑(𝑟)𝜑(𝑓) = 𝜑(𝑟) 0𝑆 = 0𝑆𝜑(𝑓 𝑟) = 𝜑(𝑓)𝜑(𝑟) = 0𝑆 𝜑(𝑟) = 0𝑆 ,
so the kernel is an ideal.

Corollary 5.1.12. A ring homomorphism is injective if and only if its
kernel is the zero ideal.

Proof. Let 𝜑∶𝑅→𝑆 be a ring homomorphism.⇐: Suppose that 𝜑 is injective. Lemma 5.0.3 establishes that𝜑(0𝑅) = 0𝑆. Injectivity ensures that 0𝑅 is the only ring element
sent to 0𝑆. Thus, we have Ker(𝜑) = ⟨0⟩.⇒: Suppose that the kernel of 𝜑 is zero. For any elements 𝑓 and𝑔 in 𝑅, the equation 𝜑(𝑓) = 𝜑(𝑔) is equivalent to 𝜑(𝑓 − 𝑔) =𝜑(𝑓)−𝜑(𝑔) = 0𝑆. Since Ker(𝜑) = ⟨0⟩, we deduce that 𝑓−𝑔 = 0𝑅
and 𝑓 = 𝑔, so 𝜑 is injective. .
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Corollary 5.1.13. For any ring homomorphism 𝜑∶ 𝑅 → 𝑆, we have
Ker(𝜑) = 𝑅 if and only if we have 𝑆 = 0.

Proof. Since 𝜑(1𝑅) = 1𝑆, we have Ker(𝜑) = 𝑅 if and only if 1𝑆 = 0𝑆
which is equivalent to 𝑆 = 0.

Exercises

Problem 5.1.14. Let U3(ℤ) be the subset of all upper triangular(3 × 3)‑matrices with integer entries;

U3(ℤ)∶= {[𝑎1 𝑎2 𝑎30 𝑎3 𝑎40 0 𝑎6]
|||| 𝑎1, 𝑎2, … , 𝑎6 ∈ ℤ} .

(i) Verify that U3(ℤ) is a subring of the ring of all (3×3)‑matrices
with integer entries.

(ii) Given the matrix

N∶= [0 1 00 0 10 0 0] ,
let 𝜂∶ℤ[𝑥]→U3(ℤ) be the ring homomorphism defined by𝜂(𝑎𝑚 𝑥𝑚 +⋯+ 𝑎1 𝑥 + 𝑎0) = 𝑎𝑚 N𝑚 +⋯+ 𝑎1 N + 𝑎0 I .
Find a polynomial 𝑓 in ℤ[𝑥] such that Ker(𝜓) = ⟨𝑓⟩.

5.2 Quotient Rings

Is every ideal the kernel of a ring homomorphism? Ideals provide
a rich source of new rings.

Definition 5.2.0. Let 𝐼 be an ideal in a ring 𝑅. For any elements 𝑎
and 𝑏 in 𝑅, define the relation ∼𝐼 on 𝑅 by 𝑎 ∼𝐼 𝑏 if the difference𝑏 − 𝑎 is an element in 𝐼.

Example 5.2.1. When 𝑅 = ℤ and 𝐼 = ⟨ℓ⟩ for some positive integerℓ, we have 𝑚∼𝐼 𝑛 if and only if 𝑚≡𝑛 mod ℓ.

Proposition 5.2.2. For any ideal 𝐼 in a ring 𝑅, the relation ∼𝐼 is an
equivalence relation.

Proof. Let 𝑎, 𝑏, and 𝑐 be elements in the ring 𝑅.
(Reflexive) Since 𝑎 − 𝑎 = 0 and 0 ∈ 𝐼, we have 𝑎 ∼𝐼 𝑎.
(Symmetric) Suppose that 𝑎 ∼𝐼 𝑏. Since 𝑏 − 𝑎 ∈ 𝐼, −1 ∈ 𝑅, and(−1)(𝑏 − 𝑎) = 𝑎 − 𝑏 ∈ 𝐼, we have 𝑏 ∼𝐼 𝑎.
(Transitive) Suppose that 𝑎∼𝐼 𝑏 and 𝑏∼𝐼 𝑐. It follows that 𝑏−𝑎 ∈ 𝐼

and 𝑐 − 𝑏 ∈ 𝐼, so (𝑏 − 𝑎) + (𝑐 − 𝑏) = 𝑐 − 𝑎 ∈ 𝐼, so 𝑎 ∼𝐼 𝑐.

Definition 5.2.3. Let 𝐼 be an ideal in a ring 𝑅. For any element 𝑎 in𝑅, the coset, denoted by 𝑎 + 𝐼 ∶= {𝑎 + 𝑟 | 𝑟 ∈ 𝐼}, is the equivalence
class of 𝑎 with respect to the relation ∼𝐼 . The set of equivalence
classes in 𝑅 relative to the relation ∼𝐼 is denoted by 𝑅/𝐼 ∶= 𝑅/∼𝐼 .

As with ℤ/⟨ℓ⟩, we want the quotient set 𝑅/𝐼 to be a ring.
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Theorem 5.2.4. Let 𝐼 be an ideal in a ring 𝑅. The quotient 𝑅/𝐼 is a
ring with addition and multiplication defined, for any elements 𝑎 and 𝑏
in 𝑅, by (𝑎+ 𝐼)+ (𝑏+ 𝐼) = (𝑎+ 𝑏)+ 𝐼 and (𝑎+ 𝐼) (𝑏+ 𝐼) = (𝑎𝑏)+ 𝐼
respectively. Moreover, the canonical map 𝜋∶𝑅→𝑅/𝐼 defined, for any
element 𝑎 in 𝑅, by 𝜋(𝑎) = 𝑎+ 𝐼, is a surjective ring homomorphism and
satisfies Ker(𝜋) = 𝐼.

Proof. We first show that the binary operations on 𝑅/𝐼 are well‑
defined. Given elements 𝑎, 𝑏, 𝑐, and 𝑑 in 𝑅 such that 𝑏 ∼𝐼 𝑎 and𝑑 ∼𝐼 𝑐, we need to prove that (𝑏 + 𝑑) ∼𝐼 (𝑎 + 𝑐) and (𝑏𝑑) ∼𝐼 (𝑎 𝑐).
Since 𝑎 − 𝑏 ∈ 𝐼 and 𝑐 − 𝑑 ∈ 𝐼, it follows that(𝑎 − 𝑏) + (𝑐 − 𝑑) = (𝑎 + 𝑑) − (𝑏 + 𝑑) ∈ 𝐼 and(𝑎 − 𝑏)𝑐 + 𝑏(𝑐 − 𝑑) = (𝑎 𝑐) − (𝑏𝑑) ∈ 𝐼 ,
so we have (𝑏+𝑑)∼𝐼 (𝑎+𝑐) and (𝑏𝑑)∼𝐼 (𝑎 𝑐). As binary operations
are well‑defined on the quotient, the required properties on 𝑅/𝐼
are inherited directly from those on the ring 𝑅. In particular, the
additive identity is 0 + 𝐼 and the multiplicative identity is 1 + 𝐼.

For any elements 𝑎 and 𝑏 in the original ring 𝑅, the definitions
for addition and multiplication on the quotient ring 𝑅/𝐼 give𝜋(𝑎 + 𝑏) = (𝑎 + 𝑏) + 𝐼 = (𝑎 + 𝐼) + (𝑏 + 𝐼) = 𝜋(𝑎) + 𝜋(𝑏)𝜋(𝑎𝑏) = (𝑎𝑏) + 𝐼 = (𝑎 + 𝐼)(𝑏 + 𝐼) = 𝜋(𝑎)𝜋(𝑏)𝜋(1) = 1 + 𝐼 ,
so the canonical map 𝜋∶𝑅 → 𝑅/𝐼 is a ring homomorphism. As
every coset in 𝑅/𝐼 has the form 𝑎 + 𝐼 for some element 𝑎 in 𝑅, the
map 𝜋 is surjective. Finally, the element 𝑎 in 𝑅 belongs to Ker(𝜑) if
and only if 𝑎 + 𝐼 = 0 + 𝐼 or equivalently 𝑎 = 𝑎 − 0 ∈ 𝐼. Therefore,
we conclude that Ker(𝜑) = 𝐼.

Exercises

Problem 5.2.5. Consider the ideal 𝐼 ∶= ⟨1 + 2 i⟩ in the ring ℤ[i] ∶={𝑎 + 𝑏 i ∈ ℂ | 𝑎, 𝑏 ∈ ℤ} of Gaussian integers. Let 𝑅 ∶= ℤ[i]/𝐼 be the
quotient ring.

(i) Are the cosets i + 𝐼 and 2 + 𝐼 equal in 𝑅?
(ii) Are the cosets 4 + 𝐼 and −1+ 𝐼 equal in 𝑅?

(iii) How many elements does 𝑅 have?
(iv) Is 𝑅 a field?


