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6.3 Sun Zi’s Remainder Theorem

When can we factor a ring? In certain circumstances, one may
decompose a ring into a product of its quotients.

Definition 6.3.0. A ring element r is idempotent if > = r. In a
ring R, a trivial idempotent is either the additive identity Oy or the
multiplicative identity 15, both which are always idempotent. Two
idempotents r and s in R are orthogonal if rs = sr = Op.

Problem 6.3.1. Show that Z/(4) is not isomorphic to Z/(2) x Z/(2).

Solution. Let ¢: R — S be aring isomorphism. For any idempotent
rin R, we have ¢(r)? = @(r) p(r) = ¢(r?) = ¢(r), so the image
@(r) is an idempotent in S. The product ring Z /(2) x Z /(2) has
a pair of non-trivial orthogonal idempotents which sum to the
multiplicative identity:

([11, [0]2)2 = ([11,[0],), ([112, [0])([0]2, [1]2) = ([0];, [0]2),

([0],, [1]2)2 = ([0]2, [1]2), ([1]z,[0]2) + ([0, [1];) = ([0]5, [112)-
In contrast, the ring Z/ (4) has only the trivial idempotents:

[0]421 = [0]4, [1]42; = [1]4, [2]421 = [4]4 = [0]4, [3]421 =[9]4 = [1]4.
We conclude that Z/(4) is not isomorphic to Z/(2) x Z/(2). O

Definition 6.3.2. For any ideals I and J in a ring R, their sum is the
setI +J:={f +g| f €I and g € J}. When R is commutative, their
product is

IT:={figi+fs 8t +Fm8m | fis frrer fn €1 aNA 81,830 8 € T}

The sum and product of ideals are more than just sets.

Proposition 6.3.3. LetI andJ beideals in the ring R. The sumI +J is
the smallest ideal containing both I and J. When R is commutative. the
productIJ is an ideal contained inI n J.

Proof. For any elements h; and h, in the sum I + J, there exists
elements f; and f, in the ideal I and elements g; and g, in the
ideal J such that h; = f; + g, and h, = f, + g,. Given an element
r in the ring R, the elements h;, + h, = (f; + f5) + (g1 + &),
rh, = (rf1) + (rg),and hyr = (f1r) + (g, r) belong to the set
I+ J,sothesumI + J is an ideal.
Suppose that K is an ideal that contains I and J. It follows that
K must contain all elements f in I and all g in J. Since K is an
ideal it must contain all f + g where f € I and g € J. In particular,
we have I +J C K, so I + J is the smallest ideal containing I and J.
For any elements h and h’ in the product I J, there are elements
f1’f2’"~’fmaf1/’f2,5'"’fr,n inI and gl’gZ""5gM5g/1’g,2""’g;'rL inJ
such that h = Z;":I figjand h' = ZT:I f; & Given an element r in
the ring R, the elements
h+h' =figi+ &+ +fm8mt fi81+ 28+ + [rn&nm,
rh=(rf)g+f)g+ -+ fn)&n and
hr=fi(gr +f2(&r)+ -+ fmn(gnr)

Copyright © 2023 by Gregory G. Smith



Copyright © 2023 by Gregory G. Smith ISOIl’lOl’phiSl’nS

belong to the set I J, so the product I J is an ideal. By definition,
we alsohaveIJ CINnJ. O

We record two technical observations.

Lemma 6.3.4. LetJ,I,,1,,...,1, beideals in a commutative ring R.
WhenR =J + ijoralll < j £ n, we have
R =J+IIIZIn =J+(Il ﬂlzﬂ---ﬂIn).

Proof. SinceJI; C Jnl;foralll < j < n,itsuffices to prove
thatR = J + I, I, --- I,,. By induction, it suffices to consider the
case n = 2. By hypothesis, there exists elements f; and f, in
the ideal J, an element g, in I;, and an element g, in I, such that
1=f1+g =f,+g. It follows that

I1=fL+(fitg)e=1r+fig)+&8&el+11,,
whenceR =J + I, I,. O

Lemma 6.3.5. For any ideals I, I,, ..., I,, in a commutative ring R such
thatl; + I, = R forall j # k, we have L, n,n---NI, = [, I, -+ I,.

Proof. Proposition 6.3.3 impliesthat; I, ---I, CI,nI,n---Nn1I,, so
it suffices to prove that I, I, ---I, 2 I; n I, n --- n I,. We proceed by
induction on n. When n = 2, there exists an element f; in I; and
an element f, in I, such that f; + f, = 1. When g € I, n I,, we
haveg =g(fi+ fo) =8fi+g8f, € 1 I,,sol,nI, C I, I,. Since
Lemma 6.3.4 shows thatR = I,, + (I, I, ---I,,_;), the base case and
the induction hypothesis give
ILnLn--nl_ nl,=(Iinbn---nI,_;)nI,
=(hnhLn-nl, DI,
=(hWLLi DL, =LL 1,1 1. O

We now characterize rings are a product of quotient rings.

Sun Zi’s Remainder Theorem 6.3.6. For any positive integer n
and any ideals I, I, ..., I,, in a commutative ring R, the following are
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The earliest version of Theorem 6.3.6,

equivalent. with R = Z, appears in the work of the
(@) Themap7: R — H'?_l R /1;, whose components are the canonical Chinese mathematician Sun Zi.
. L= . Nothing is known about this
surjections, is ring isomorphism. mathematician except for his text
ere are elements ey, €,, ..., €, in R such that, for alll < j < n, we unzi suanjing.
(b) Th 1 tse;, e, . In R such that, Ni<j< Sunzi ji
havee: = ej,eje, = 0 forallj # k,1g = e; + e, + -+ + ey, and
I =(1-¢).

(c) Forall j # k,wehavel; +I) = R and I, I,--- I, = (Og).
(d) Forall j # k, wehavel; + Iy = RandI; nI, n--- NI, = (Og).

Proof.

(a)=> (b): Since R is isomorphic to H?ﬂ R / I;, there is an element
e; in R corresponding to the element (0,0, ..., 0, 1R/Ij, 0,..,0)in
the product H?:l R /I ;. It follows that, for all 1 < j < n, we have
e; =ej,eje, =0forall j # k,and 1g = e; + e, + -+ + e,,. Since
the ideal I; is the kernel of the canonical surjection 7;: R —>R/I~,
we also have I; = (1 —¢;).
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(b) = (c): Suppose that there exists element e; with the given
properties. For any j # k, we have 1 —¢; € I;, e; (1 — ¢;) € Ii,
sol € I; + [ and R = I; + I;. Moreover, for any elements
ri,¥3, ..., € R, we have

rn-e)ry(I1—e)-r,(1—e,)=(rry- Vn)((l —e)(1—e)-(1- en))
=(ryr)(l—(e,+e+--+e,))=0,
whence I, I, --- I, = {0).
(¢)= (d): This follows from Lemma 6.3.5.
(d)=> (a): The kernel of the map 7r: R - H?:l R/Ij, whose com-
ponents are the canonical surjective ring homomorphisms, is
clearly I, nI, n--- n I, so 7t is injective. To prove surjectivity,
we show that, for any elements r, 15, ...7,, in R, there exists an
element r in R such that r ~f, r; for all1 £ j < n. We proceed by
induction on n. The base case n = 1 is trivial. By the induction
hypothesis, there exists an element s in R such that s ~;, r; for
all1l £ j < n—1. We seek an element of the form s+ z € R where
Z~p, Oforalll < j<n-— } and s + z ~1, n- In other words, the
element z belongs to ﬂ::l Ijandr, —y —z € I,. Lemma 6.3.4
demonstrates thatR = I,, + (I, nI, n---nI,_;), so the existence
of the element z follows. O

Exercises

Problem 6.3.7.
(i) Prove that Z/(60) is isomorphic to Z/(3) X Z/(4) x Z/(5).
(ii) Exhibit elements e;, e,, and e; in Z/(60) such that

e2=e e=e, ei=e ee;=0 ee;=0 ee,=0

and [1]60 =e t+e+ es.



/ Fields

Fields are probably the most widely used rings. For domains, the
fraction field is the smallest field in which it can be embedded.
Moreover, fields are characterized by their ideals and the ring
homomorphisms.

7.0 Rings of Fractions

How are rational numbers constructed from integers? There is a
formal way to introduce “demoninators” in a commutative ring.

Definition 7.0.0. Let R be a commutative ring. A subset D of R is
multiplicative if every finite product of elements in D belongs to D.

Examples 7.0.1.

e For any element r in the commutative ring R, the set {r" | n € N}
of nonnegative powers is multiplicative.

e The set of elements in a commutative ring R that are not zero
divisors is multiplicative.

e The intersection of multiplicative subsets is multiplicative. The
intersection of all multiplicative subsets containing a set is the
multiplicative set it generates.

Theorem 7.0.2. For any multiplicative subset D in a commutative ring
R, there exists a commutative ring R[D~'], called the ring of fractions
with demoninators in D, and a ring homomorphismn: R — R[D™1]
with the following universal property:
e the elements in the setn(D) are units in R[D];
e for any ring homomorphism: R — S such that the elements in the
set (D) are units in S, there exists a unique ring homomorphism
$: R[D~']— S such thaty) = .

Proof. Consider the set R x D with the relation:

(r,d) ~ (s,e) © there exists c € D such thatc(re — sd) = 0.

We see that this relation is reflexive and symmetric. It is transitive
because the equations c(re — sd) = 0Oand b (s f — te) = 0 yield

cbe(rf—td)=bfcre—cdbte+bfcsd—bfcsd
=bf(c(re—sd))+cd(b(sf—te)=0
andcbe € D. Let R[D7'] := (R x D)/ ~ be the quotient set under

the equivalence relation. For any ordered pair (7, d), we write r/d
for the equivalent class containing the pair (r,d) in R[D™!].

Consider two equivalence classes f = r/d and g = s/e in R[D™!].

We claim that the equivalent classes (re + sd)/(d e) and (rs)/(d e)
are independent of the chosen representatives for f and g. Given
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This is the same as saying that 1z € D
and the product of two elements of D
belongs to D.

The multiplicative set generated by a
given subset consists of all the finite
products of its elements.

R—Y35
”l ;

R[D™]

Figure 71: Commutative diagram
arising from Theorem 7.0.2

Two elements in R[D~!] can always be
written in the form f/d and g/d with
f,g € Randd € D with the same
denominator. Given f/d and g/e is
R[D7!'], we have f/d = fe/deand
gle =gd/de.
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another representative f = r'/d’, there exists c in D such that
c(rd —r'd) = 0 whence
c((re+sd)de)—(r'e+sd)(de))=e*(c(rd —r'd))=0,
c((rs)(d'e) — (r's)(de)) =es(c(rd —r'd))=0,
In other words, we have (re + sd,de) ~ (r'e + sd’,d’ e) and
(rs,de) ~ (r's,d’ e). Hence, the binary operations on R[D~!]
defined by

(f,g)Hf+g=re;eSd and (f,g)Hfg=%

are well-defined. One verify that these two operations make
R[D~!] into a commutative ring as follows:

<£+§)+t:re+sd+t:(re+sd)f+t(de):ref+sdf+tde:r+sf+te r (s t)

dte)TFTTde F def def dtTer Tat\eTy
£+§_re+sf_sf+re_§ r
d e de =~ de e d
£+9 ri+do _r
d 1 dl d
£+—_r_rd—rd 0o _o
d d dz T d2 1

r(s _ sf+te\ _r(sf+te) rs rt _(r\(s K(f)

d(e+f)_d< e f )‘ def _de+df_<d>(e)+<d) g)
The additive identity is 0/1 and the multiplicative identity is 1/1.

Next, the map 7): R — R[d~!] defined by n(r) = r/lisaring

homomorphism because we have

r+s _r rs r

nr+s) =72 =141 =00 +06), nors) =T =(3)(3) =10,

and 7(1) = 1/1. For any element d in D, the multiplicative inverse
of the element d/1 in R[D~!]is 1/d.

Finally, consider a ring homomorphism %: R — S such that
the elements in the image (D) are units. There exists a map
$: R[D~1] - S defined, for any equivalence class r/d in R[D!],
by P(r/d) := zp(r)(zp(d))_l. When r/d = r'/d’, there exists an
element cin D such thatc(rd’ — r'd) = 0 which implies that
P(e) (P(P(d") —p(r')p(d)) = 0. As P(c), P(d) and 1p(d’) are units,
we obtain z,b(r)(z,b(d))_1 = l,b(r’)(z,b(d’))_l. Since
B(r/d +s/e) = P((re + sd)/(de)) = Yp(re + sd)(P(de))
= () (o) + P(5) PA)B@) " (@)
= P(IR(D) "+ PS)(Pe) = P(r/d) + B(s/e),
P((r1d)(s/e)) = P((rs)/(de)) = p(rs)(@(de))”
= (1) P () (B(e)”
= P()HA) " P(s) (@) = Prid)dis/e),
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and P(1/1) = ¢(1R)(¢(1R))'1 = 15(15)_1 =15, the map 7’ is a ring
homomorphism. By construction, we have 7 = . Moreover,
the map 1,/0\ is determined by this equation because we have both
D(ris) = P((r/1)A/s)) = Pr/)PA/s) = P(r)P(1/s)and 1 =
(/1) = P(1/s) P(s/1) = (/) P(s). O

Remark 7.0.3. The kernel of the unique map 7: R — R[D~!] is the

set elements r in R such that there exists d in D such thatrd = 0. When 0 € D, the ring R[D™!] is the

For the map 7 to be injective, it is necessary and sufficient that the zeroring.

set D contain no zero divisor in R.

Definition 7.0.4. When multiplicative set D consists of the
nonzero divisors in commutative ring R, the ring R[D~!] is the
total ring of fractions. When R is a domain, the ring R[D~!] is the
field of fractions of R.

Exercises

Problem 7.0.5. Consider two multiplicative subsets D and E a

commutative ring R satisfying D C E. Let ¢: R[D~!] - R[E~!] be

the ring homomorphism defined, for any fraction r/d in R[D™!],

by ¢(r/d) = r/d. Show that the following are equivalent:

(a) The map g is a ring isomorphism.

(b) For any element e in E, the fraction e/1 is a unit in R[D™!].

(c) For any element e in E, there exists an element s in R such
thates € D.

71 Recognizing Fields

How do we identify fields among all commutative rings? Fields are
characterized via their ideals and their ring homomorphisms.

Theorem 7.1.0. For any nonzero commutative ring R, the following are
equivalent:

(a) TheringR is a field.

(b) The only ideals in R are(0) and (1).

(c) Every ring homomorphism from R to a nonzero ring is injective.

Proof.

(a)= (b): LetI be a nonzero ideal in R. Choose 0 # r € I. The ring
elementrisaunit,soR=(1)=(r)CICRandI =R.

(b)= (c): Let S be a nonzero ring. For any ring homomorphism
@: R - S, the ideal Ker(gp) is a proper ideal. It follows that
Ker(¢) = (0) and the map ¢ is injective.

(c)= (a): Consider an element r in R that is not a unit. Hence, we
have (r) # (1) and S := R/(r) is not the zero ring. Let 7: R — S be
the canonical surjection. By hypothesis, the map 7 is injective,
so (r) = Ker(¢p) = (0yand r = 0. O

71
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As a counterpoint to the previous theorem, we also want to
determine when a quotient ring is a field and when there exists a
surjective ring homomorphism onto a field.

Definition 7.1.1. Let R be aring. By an abuse of language, an ideal
I is maximal if its a maximal element (under inclusion) in the set of
ideals distinct from R. In other words, an ideal I is maximal if and

only if I # (1) and the only ideals containing I are I and R.

Corollary 7.1.2. Anideall in a commutative ring R is maximal if and
only if the quotient ringR/I is a field.

Proof. The Correspondence Theorem 6.2.0 shows that the ideals
in R containing I are in bijection with the ideals in the quotient
ring R/I. Theorem 7.1.0 demonstrates that the ring R/I is a field if
and only if and only if it has two ideals: (0) and (1). It follows that
the only ideals containing I are I and R if and only if the quotient
ring R/I is a field. O

Remark 7.1.3. Theorem 2.2.4 demonstrates that the maximal
ideals in the ring Z are precisely the principal ideals generated by
a prime integer.

Theorem 7.1.4 (Krull 1929). Every nonzero commutative ring R has
a maximal ideal. Moreover, every proper ideal I in R is contained in a
maximal ideal.

Corollary 7.1.5. There exists a surjective ring homomorphism from any
nonzero commutative ring to a field.

Proof. Let R be a nonzero commutative ring. By Theorem 7.1.4,
there exists a maximal ideal M in R. Since Corollary 7.1.2 shows
that the quotient ring R/M is a field, the canonical surjection
m:R—->R /I provides the desired ring homomorphism. O

To prove Theorem 7.1.4 requires an new axiom from set theory.

Definition 7.1.6. A partially ordered set or poset XL is a set together The adjective “partial” indicates that
with an order relation < such that not every pair of elements in a

. partially ordered set is required to be

Reflexive: For any element x € X, we have x < x. comparable under the order relation.

Antisymmetric: The relations x < y and y < x imply that x = y. In other words, there may be
Transitive: The relations x < y and y < z imply that x < z. )eclzn;e:;i;iin; }}: oslz?h that neither

Two elements x and y in X' are comparableif x < yory < x. A

chainin X is a subset where any two elements are comparable. An

upper bound for a nonempty subset Y of XX is an element x in X

such that, for any element y in Y, we have y < x. A maximal element

of a nonempty subset Y is an element y in Y such that, for any

element z in Y, we have z < y.

<
<

Examples 7.1.7. Standard examples of posets include
e the real numbers ordered by the standard inequality <,
e the set of subsets of a given set ordered by inclusion C,
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e the set of nonnegative integers ordered by divisibility, and
e the set of ideals in a commutative ring ordered by inclusion.

Remark 7.1.8. Posets may not have maximal elements. For ex-
ample, real numbers R, with the usual ordering, has no maximal
elements.

Axiom 7.1.9 (Zorn’s Lemma). Any nonempty poset, in which every
chain has an upper bound, has a maximal element. [ ]

Remark 7.1.10. Zorn’s Lemma is a strengthening of the Well-Order
Principle 0.2.6 or the Principle of Induction 0.0.0.

Proof of Krull’s Theorem. The second statement implies the first,
because the ideal (0) is a proper ideal in any nonzero ring.

Let I be a proper ideal in R. Consider the set X of all ideals in
R that contain I and are not equal to R. Since I € X, the set X
is nonempty. Partially order XX by inclusion. Suppose that C is a
chain in X: for any ideals J and K in C, we have either J C K or
K C J. We claim that J* := UIGCJ is an upper bound of C. For
any ideal J in C, we clearly have J C J*. It remains to prove that J*
is a proper ideal. For any elements f and g in J* and any element
rin R, it follows that f and g in J for some ideal J in the chain C.
Since the elements f + g and r f both belong to J, the elements
f + gandr f also belong to J*, so J* is an ideal. If J* = R, then
we would have 1 € J*and 1 € J for some ideal J in the chain C
which contradicts assumption that J # R. As every chain in X has
an upper bound, Zorn’s Lemma provides a maximal element. O

Remark 7.1.11. Zorn’s Lemma is needed to prove that every vector

space has a basis and that every field has an algebraic closure.

Exercises

Problem 7.1.12. Prove that Z/<512> has exactly one maximal ideal.
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Figure 7.2: Part of the Hasse
diagram for the poset N ordered
by divisibility

Zorn’s Lemma is equivalent to the
Axiom of Choice. Kazimierz Kura-
towski (1922) proved a variant and

Max Zorn (1935) proposed it as a new
axiom of set theory.



