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6.3 Sun Zi’s Remainder Theorem

When can we factor a ring? In certain circumstances, one may
decompose a ring into a product of its quotients.

Definition 6.3.0. A ring element 𝑟 is idempotent if 𝑟2 = 𝑟. In a
ring 𝑅, a trivial idempotent is either the additive identity 0𝑅 or the
multiplicative identity 1𝑅, both which are always idempotent. Two
idempotents 𝑟 and 𝑠 in 𝑅 are orthogonal if 𝑟 𝑠 = 𝑠 𝑟 = 0𝑅.

Problem 6.3.1. Show that ℤ/⟨4⟩ is not isomorphic to ℤ/⟨2⟩ × ℤ/⟨2⟩.
Solution. Let 𝜑∶𝑅→𝑆 be a ring isomorphism. For any idempotent𝑟 in 𝑅, we have 𝜑(𝑟)2 = 𝜑(𝑟)𝜑(𝑟) = 𝜑(𝑟2) = 𝜑(𝑟), so the image𝜑(𝑟) is an idempotent in 𝑆. The product ring ℤ/⟨2⟩ × ℤ/⟨2⟩ has
a pair of non‑trivial orthogonal idempotents which sum to the
multiplicative identity:([1]2, [0]2)2 = ([1]2, [0]2) , ([1]2, [0]2)([0]2, [1]2) = ([0]2, [0]2) ,([0]2, [1]2)2 = ([0]2, [1]2) , ([1]2, [0]2) + ([0]2, [1]2) = ([0]2, [1]2) .
In contrast, the ring ℤ/⟨4⟩ has only the trivial idempotents:[0]24 = [0]4 , [1]24 = [1]4 , [2]24 = [4]4 = [0]4 , [3]24 = [9]4 = [1]4 .
We conclude that ℤ/⟨4⟩ is not isomorphic to ℤ/⟨2⟩ × ℤ/⟨2⟩.
Definition 6.3.2. For any ideals 𝐼 and 𝐽 in a ring 𝑅, their sum is the
set 𝐼 + 𝐽 ∶= {𝑓 + 𝑔 | 𝑓 ∈ 𝐼 and 𝑔 ∈ 𝐽}. When 𝑅 is commutative, their
product is𝐼 𝐽 ∶= {𝑓1 𝑔1+𝑓2 𝑔2+⋯+𝑓𝑚 𝑔𝑚 || 𝑓1, 𝑓2, … , 𝑓𝑚 ∈ 𝐼 and 𝑔1, 𝑔2, … , 𝑔𝑚 ∈ 𝐽} .

The sum and product of ideals are more than just sets.

Proposition 6.3.3. Let 𝐼 and 𝐽 be ideals in the ring 𝑅. The sum 𝐼 +𝐽 is
the smallest ideal containing both 𝐼 and 𝐽. When 𝑅 is commutative. the
product 𝐼 𝐽 is an ideal contained in 𝐼 ∩ 𝐽.

Proof. For any elements ℎ1 and ℎ2 in the sum 𝐼 + 𝐽, there exists
elements 𝑓1 and 𝑓2 in the ideal 𝐼 and elements 𝑔1 and 𝑔2 in the
ideal 𝐽 such that ℎ1 = 𝑓1 + 𝑔1 and ℎ2 = 𝑓2 + 𝑔2. Given an element𝑟 in the ring 𝑅, the elements ℎ1 + ℎ2 = (𝑓1 + 𝑓2) + (𝑔1 + 𝑔2),𝑟 ℎ1 = (𝑟𝑓1) + (𝑟 𝑔1), and ℎ1 𝑟 = (𝑓1 𝑟) + (𝑔1 𝑟) belong to the set𝐼 + 𝐽, so the sum 𝐼 + 𝐽 is an ideal.

Suppose that 𝐾 is an ideal that contains 𝐼 and 𝐽. It follows that𝐾 must contain all elements 𝑓 in 𝐼 and all 𝑔 in 𝐽. Since 𝐾 is an
ideal it must contain all 𝑓 + 𝑔 where 𝑓 ∈ 𝐼 and 𝑔 ∈ 𝐽. In particular,
we have 𝐼 + 𝐽 ⊆ 𝐾, so 𝐼 + 𝐽 is the smallest ideal containing 𝐼 and 𝐽.

For any elements ℎ and ℎ′ in the product 𝐼 𝐽, there are elements𝑓1, 𝑓2, … , 𝑓𝑚,𝑓′1, 𝑓′2, … , 𝑓′𝑚 in 𝐼 and 𝑔1, 𝑔2, … , 𝑔𝑚, 𝑔′1, 𝑔′2, … , 𝑔′𝑚 in 𝐽
such that ℎ = ∑𝑚𝑗=1 𝑓𝑗 𝑔𝑗 and ℎ′ = ∑𝑚𝑗=1 𝑓′𝑗 𝑔′𝑗. Given an element 𝑟 in
the ring 𝑅, the elementsℎ + ℎ′ = 𝑓1 𝑔1 + 𝑓2 𝑔2 +⋯+𝑓𝑚 𝑔𝑚 + 𝑓′1 𝑔′1 + 𝑓′2 𝑔′2 +⋯+𝑓′𝑚 𝑔′𝑚 ,𝑟 ℎ = (𝑟𝑓1) 𝑔1 + (𝑟𝑓2) 𝑔2 +⋯+ (𝑟𝑓𝑚)𝑔𝑚 , andℎ𝑟 = 𝑓1 (𝑔1 𝑟) + 𝑓2 (𝑔2 𝑟) +⋯+𝑓𝑚 (𝑔𝑚 𝑟)
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belong to the set 𝐼 𝐽, so the product 𝐼 𝐽 is an ideal. By definition,
we also have 𝐼 𝐽 ⊆ 𝐼 ∩ 𝐽.

We record two technical observations.

Lemma 6.3.4. Let 𝐽, 𝐼1, 𝐼2, … , 𝐼𝑛 be ideals in a commutative ring 𝑅.
When 𝑅 = 𝐽 + 𝐼𝑗 for all 1 ⩽ 𝑗 ⩽ 𝑛, we have𝑅 = 𝐽 + 𝐼1 𝐼2 ⋯𝐼𝑛 = 𝐽 + (𝐼1 ∩ 𝐼2 ∩⋯ ∩ 𝐼𝑛) .
Proof. Since 𝐽 𝐼𝑗 ⊆ 𝐽 ∩ 𝐼𝑗 for all 1 ⩽ 𝑗 ⩽ 𝑛, it suffices to prove
that 𝑅 = 𝐽 + 𝐼1 𝐼2 ⋯𝐼𝑛. By induction, it suffices to consider the
case 𝑛 = 2. By hypothesis, there exists elements 𝑓1 and 𝑓2 in
the ideal 𝐽, an element 𝑔1 in 𝐼1, and an element 𝑔2 in 𝐼2 such that1 = 𝑓1 + 𝑔1 = 𝑓2 + 𝑔2. It follows that1 = 𝑓2 + (𝑓1 + 𝑔1) 𝑔2 = (𝑓2 + 𝑓1 𝑔2) + 𝑔1 𝑔2 ∈ 𝐽 + 𝐼1 𝐼2 ,
whence 𝑅 = 𝐽 + 𝐼1 𝐼2.

Lemma 6.3.5. For any ideals 𝐼1, 𝐼2, … , 𝐼𝑛 in a commutative ring 𝑅 such
that 𝐼𝑗 + 𝐼𝑘 = 𝑅 for all 𝑗 ≠ 𝑘, we have 𝐼1 ∩ 𝐼2 ∩⋯ ∩ 𝐼𝑛 = 𝐼1 𝐼2 ⋯𝐼𝑛.

Proof. Proposition 6.3.3 implies that 𝐼1 𝐼2 ⋯𝐼𝑛 ⊆ 𝐼1 ∩ 𝐼2 ∩⋯ ∩ 𝐼𝑛, so
it suffices to prove that 𝐼1 𝐼2 ⋯𝐼𝑛 ⊇ 𝐼1 ∩ 𝐼2 ∩ ⋯ ∩ 𝐼𝑛. We proceed by
induction on 𝑛. When 𝑛 = 2, there exists an element 𝑓1 in 𝐼1 and
an element 𝑓2 in 𝐼2 such that 𝑓1 + 𝑓2 = 1. When 𝑔 ∈ 𝐼1 ∩ 𝐼2, we
have 𝑔 = 𝑔 (𝑓1 + 𝑓2) = 𝑔𝑓1 + 𝑔𝑓2 ∈ 𝐼1 𝐼2, so 𝐼1 ∩ 𝐼2 ⊆ 𝐼1 𝐼2. Since
Lemma 6.3.4 shows that 𝑅 = 𝐼𝑛 + (𝐼1 𝐼2 ⋯𝐼𝑛−1), the base case and
the induction hypothesis give𝐼1 ∩ 𝐼2 ∩⋯ ∩ 𝐼𝑛−1 ∩ 𝐼𝑛 = (𝐼1 ∩ 𝐼2 ∩⋯ ∩ 𝐼𝑛−1) ∩ 𝐼𝑛= (𝐼1 ∩ 𝐼2 ∩⋯ ∩ 𝐼𝑛−1) 𝐼𝑛= (𝐼1 𝐼2 ⋯𝐼𝑛−1) 𝐼𝑛 = 𝐼1 𝐼2 ⋯𝐼𝑛−1 𝐼𝑛 .

We now characterize rings are a product of quotient rings.

Sun Zi’s Remainder Theorem 6.3.6. For any positive integer 𝑛
and any ideals 𝐼1, 𝐼2, … , 𝐼𝑛 in a commutative ring 𝑅, the following are
equivalent.
(a) The map 𝜋∶𝑅→∏𝑛𝑗=1 𝑅/𝐼𝑗, whose components are the canonical

surjections, is ring isomorphism.
(b) There are elements 𝑒1, 𝑒2, … , 𝑒𝑛 in 𝑅 such that, for all 1 ⩽ 𝑗 ⩽ 𝑛, we

have 𝑒2𝑗 = 𝑒𝑗, 𝑒𝑗 𝑒𝑘 = 0 for all 𝑗 ≠ 𝑘, 1𝑅 = 𝑒1 + 𝑒2 + ⋯ + 𝑒𝑛, and𝐼𝑗 = ⟨1 − 𝑒𝑗⟩.
(c) For all 𝑗 ≠ 𝑘, we have 𝐼𝑗 + 𝐼𝑘 = 𝑅 and 𝐼1 𝐼2 ⋯𝐼𝑛 = ⟨0𝑅⟩.
(d) For all 𝑗 ≠ 𝑘, we have 𝐼𝑗 + 𝐼𝑘 = 𝑅 and 𝐼1 ∩ 𝐼2 ∩⋯ ∩ 𝐼𝑛 = ⟨0𝑅⟩.

The earliest version of Theorem 6.3.6,
with 𝑅 = ℤ, appears in the work of the
Chinese mathematician Sun Zi.
Nothing is known about this
mathematician except for his text
Sunzi suanjing.

Proof.
(a) ⇒ (b): Since 𝑅 is isomorphic to ∏𝑛𝑗=1 𝑅/𝐼𝑗, there is an element𝑒𝑗 in 𝑅 corresponding to the element (0, 0, … , 0, 1𝑅/𝐼𝑗 , 0, … , 0) in

the product ∏𝑛𝑗=1 𝑅/𝐼𝑗. It follows that, for all 1 ⩽ 𝑗 ⩽ 𝑛, we have𝑒2𝑗 = 𝑒𝑗, 𝑒𝑗 𝑒𝑘 = 0 for all 𝑗 ≠ 𝑘, and 1𝑅 = 𝑒1 + 𝑒2 +⋯+ 𝑒𝑛. Since
the ideal 𝐼𝑗 is the kernel of the canonical surjection 𝜋𝑗∶𝑅→𝑅/𝐼𝑗,
we also have 𝐼𝑗 = ⟨1 − 𝑒𝑗⟩.
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(b) ⇒ (c): Suppose that there exists element 𝑒𝑗 with the given
properties. For any 𝑗 ≠ 𝑘, we have 1 − 𝑒𝑗 ∈ 𝐼𝑗, 𝑒𝑗 (1 − 𝑒𝑘) ∈ 𝐼𝑘,
so 1 ∈ 𝐼𝑗 + 𝐼𝑘 and 𝑅 = 𝐼𝑗 + 𝐼𝑘. Moreover, for any elements𝑟1, 𝑟2, … , 𝑟𝑛 ∈ 𝑅, we have𝑟1 (1 − 𝑒1) 𝑟2 (1 − 𝑒2)⋯𝑟𝑛 (1 − 𝑒𝑛) = (𝑟1 𝑟2 ⋯𝑟𝑛)((1 − 𝑒1) (1 − 𝑒2)⋯(1 − 𝑒𝑛))= (𝑟1 𝑟2 ⋯𝑟𝑛)(1 − (𝑒1 + 𝑒2 +⋯+ 𝑒𝑛)) = 0 ,
whence 𝐼1 𝐼2 ⋯𝐼𝑛 = ⟨0⟩.

(c) ⇒ (d): This follows from Lemma 6.3.5.
(d) ⇒ (a): The kernel of the map 𝜋∶𝑅 →∏𝑛𝑗=1 𝑅/𝐼𝑗, whose com‑

ponents are the canonical surjective ring homomorphisms, is
clearly 𝐼1 ∩ 𝐼2 ∩ ⋯ ∩ 𝐼𝑛, so 𝜋 is injective. To prove surjectivity,
we show that, for any elements 𝑟1, 𝑟2, … 𝑟𝑛 in 𝑅, there exists an
element 𝑟 in 𝑅 such that 𝑟 ∼𝐼𝑗 𝑟𝑗 for all 1 ⩽ 𝑗 ⩽ 𝑛. We proceed by
induction on 𝑛. The base case 𝑛 = 1 is trivial. By the induction
hypothesis, there exists an element 𝑠 in 𝑅 such that 𝑠 ∼𝐼𝑗 𝑟𝑗 for
all 1 ⩽ 𝑗 ⩽ 𝑛−1. We seek an element of the form 𝑠+𝑧 ∈ 𝑅 where𝑧 ∼𝐼𝑗 0 for all 1 ⩽ 𝑗 ⩽ 𝑛 − 1 and 𝑠 + 𝑧 ∼𝐼𝑛 𝑟𝑛. In other words, the
element 𝑧 belongs to ⋂𝑛−1𝑗=1 𝐼𝑗 and 𝑟𝑛 − 𝑦 − 𝑧 ∈ 𝐼𝑛. Lemma 6.3.4
demonstrates that 𝑅 = 𝐼𝑛 + (𝐼1 ∩ 𝐼2 ∩⋯ ∩ 𝐼𝑛−1), so the existence
of the element 𝑧 follows.

Exercises

Problem 6.3.7.
(i) Prove that ℤ/⟨60⟩ is isomorphic to ℤ/⟨3⟩ × ℤ/⟨4⟩ × ℤ/⟨5⟩.

(ii) Exhibit elements 𝑒1, 𝑒2, and 𝑒3 in ℤ/⟨60⟩ such that𝑒21 = 𝑒1 𝑒22 = 𝑒2 𝑒23 = 𝑒3 𝑒2 𝑒3 = 0 𝑒1 𝑒3 = 0 𝑒1 𝑒2 = 0
and [1]60 = 𝑒1 + 𝑒2 + 𝑒3.
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Fields are probably the most widely used rings. For domains, the
fraction field is the smallest field in which it can be embedded.
Moreover, fields are characterized by their ideals and the ring
homomorphisms.

7.0 Rings of Fractions

How are rational numbers constructed from integers? There is a
formal way to introduce “demoninators” in a commutative ring.

This is the same as saying that 1𝑅 ∈ 𝐷
and the product of two elements of 𝐷
belongs to 𝐷.

Definition 7.0.0. Let 𝑅 be a commutative ring. A subset 𝐷 of 𝑅 is
multiplicative if every finite product of elements in 𝐷 belongs to 𝐷.

Examples 7.0.1.⦁ For any element 𝑟 in the commutative ring 𝑅, the set {𝑟𝑛 | 𝑛 ∈ ℕ}
of nonnegative powers is multiplicative.⦁ The set of elements in a commutative ring 𝑅 that are not zero
divisors is multiplicative.⦁ The intersection of multiplicative subsets is multiplicative. The
intersection of all multiplicative subsets containing a set is the
multiplicative set it generates.

The multiplicative set generated by a
given subset consists of all the finite
products of its elements.

Theorem 7.0.2. For any multiplicative subset 𝐷 in a commutative ring𝑅, there exists a commutative ring 𝑅[𝐷−1], called the ring of fractions
with demoninators in 𝐷, and a ring homomorphism 𝜂∶𝑅 →𝑅[𝐷−1]
with the following universal property:⦁ the elements in the set 𝜂(𝐷) are units in 𝑅[𝐷−1];⦁ for any ring homomorphism 𝜓∶𝑅→𝑆 such that the elements in the

set 𝜓(𝐷) are units in 𝑆, there exists a unique ring homomorphism𝜓∶𝑅[𝐷−1]→𝑆 such that 𝜓 = 𝜓𝜂.

𝑅 𝑆
𝑅[𝐷−1]

𝜓
𝜂 𝜓

Figure 7.1: Commutative diagram
arising from Theorem 7.0.2

Proof. Consider the set 𝑅 ×𝐷 with the relation:(𝑟, 𝑑) ∼ (𝑠, 𝑒) ⇔ there exists 𝑐 ∈ 𝐷 such that 𝑐 (𝑟 𝑒 − 𝑠𝑑) = 0.

We see that this relation is reflexive and symmetric. It is transitive
because the equations 𝑐 (𝑟 𝑒 − 𝑠𝑑) = 0 and 𝑏 (𝑠𝑓 − 𝑡 𝑒) = 0 yield𝑐 𝑏 𝑒 (𝑟 𝑓 − 𝑡𝑑) = 𝑏𝑓 𝑐 𝑟 𝑒 − 𝑐𝑑 𝑏 𝑡 𝑒 + 𝑏𝑓 𝑐 𝑠𝑑 − 𝑏𝑓 𝑐 𝑠𝑑= 𝑏𝑓 (𝑐 (𝑟 𝑒 − 𝑠𝑑)) + 𝑐𝑑 (𝑏 (𝑠𝑓 − 𝑡 𝑒)) = 0
and 𝑐 𝑏 𝑒 ∈ 𝐷. Let 𝑅[𝐷−1] ∶= (𝑅 × 𝐷)/∼ be the quotient set under
the equivalence relation. For any ordered pair (𝑟, 𝑑), we write 𝑟/𝑑
for the equivalent class containing the pair (𝑟, 𝑑) in 𝑅[𝐷−1].

Two elements in 𝑅[𝐷−1] can always be
written in the form 𝑓/𝑑 and 𝑔/𝑑 with𝑓, 𝑔 ∈ 𝑅 and 𝑑 ∈ 𝐷 with the same
denominator. Given 𝑓/𝑑 and 𝑔/𝑒 is𝑅[𝐷−1], we have 𝑓/𝑑 = 𝑓 𝑒/𝑑 𝑒 and𝑔/𝑒 = 𝑔𝑑/𝑑 𝑒.

Consider two equivalence classes 𝑓 = 𝑟/𝑑 and 𝑔 = 𝑠/𝑒 in 𝑅[𝐷−1].
We claim that the equivalent classes (𝑟 𝑒 + 𝑠𝑑)/(𝑑 𝑒) and (𝑟 𝑠)/(𝑑 𝑒)
are independent of the chosen representatives for 𝑓 and 𝑔. Given
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another representative 𝑓 = 𝑟′/𝑑′, there exists 𝑐 in 𝐷 such that𝑐 (𝑟 𝑑′ − 𝑟′ 𝑑) = 0 whence𝑐 ((𝑟 𝑒 + 𝑠𝑑)(𝑑′ 𝑒) − (𝑟′ 𝑒 + 𝑠𝑑′)(𝑑 𝑒)) = 𝑒2 (𝑐 (𝑟 𝑑′ − 𝑟′ 𝑑)) = 0 ,𝑐((𝑟 𝑠)(𝑑′𝑒) − (𝑟′ 𝑠)(𝑑 𝑒)) = 𝑒 𝑠(𝑐 (𝑟 𝑑′ − 𝑟′ 𝑑)) = 0 ,
In other words, we have (𝑟 𝑒 + 𝑠𝑑, 𝑑 𝑒) ∼ (𝑟′ 𝑒 + 𝑠𝑑′, 𝑑′ 𝑒) and(𝑟 𝑠, 𝑑 𝑒) ∼ (𝑟′ 𝑠, 𝑑′ 𝑒). Hence, the binary operations on 𝑅[𝐷−1]
defined by(𝑓, 𝑔) ↦ 𝑓 + 𝑔 = 𝑟 𝑒 + 𝑠𝑑𝑑 𝑒 and (𝑓, 𝑔) ↦ 𝑓𝑔 = 𝑟 𝑠𝑑 𝑒
are well‑defined. One verify that these two operations make𝑅[𝐷−1] into a commutative ring as follows:

( 𝑟𝑑 + 𝑠𝑒)+ 𝑡𝑓 = 𝑟 𝑒 + 𝑠𝑑𝑑 𝑒 + 𝑡𝑓 = (𝑟 𝑒 + 𝑠𝑑)𝑓 + 𝑡 (𝑑 𝑒)𝑑 𝑒𝑓 = 𝑟 𝑒𝑓 + 𝑠𝑑 𝑓 + 𝑡𝑑 𝑒𝑑 𝑒𝑓 = 𝑟𝑑+𝑠𝑓 + 𝑡 𝑒𝑒𝑓 = 𝑟𝑑+(𝑠𝑒+ 𝑡𝑓)𝑟𝑑 + 𝑠𝑒 = 𝑟 𝑒 + 𝑠𝑓𝑑 𝑒 = 𝑠𝑓 + 𝑟 𝑒𝑑 𝑒 = 𝑠𝑒 + 𝑟𝑑𝑟𝑑 + 01 = 𝑟 1 + 𝑑 0𝑑 1 = 𝑟𝑑𝑟𝑑 + −𝑟𝑑 = 𝑟𝑑 − 𝑟𝑑𝑑2 = 0𝑑2 = 01𝑟𝑑 ((𝑠𝑒)( 𝑡𝑓)) = 𝑟𝑑 ( 𝑠 𝑡𝑒𝑓) = 𝑟 𝑠 𝑡𝑑 𝑒𝑓 = ( 𝑟 𝑠𝑑 𝑒) 𝑡𝑓 = (( 𝑟𝑑 )(𝑠𝑒)) 𝑡𝑓( 𝑟𝑑) (𝑠𝑒) = 𝑟 𝑠𝑑 𝑒 = 𝑠 𝑟𝑒𝑑 = (𝑠𝑒) ( 𝑟𝑑 )(11) ( 𝑟𝑑 ) = 𝑟𝑑 = ( 𝑟𝑑 )(11)𝑟𝑑 (𝑠𝑒 + 𝑡𝑓) = 𝑟𝑑 (𝑠𝑓 + 𝑡 𝑒𝑒𝑓 ) = 𝑟 (𝑠𝑓 + 𝑡 𝑒)𝑑 𝑒𝑓 = 𝑟 𝑠𝑑 𝑒 + 𝑟 𝑡𝑑 𝑓 = ( 𝑟𝑑) (𝑠𝑒) + ( 𝑟𝑑) ( 𝑟𝑔) .
The additive identity is 0/1 and the multiplicative identity is 1/1.

Next, the map 𝜂∶ 𝑅 → 𝑅[𝑑−1] defined by 𝜂(𝑟) = 𝑟/1 is a ring
homomorphism because we have𝜂(𝑟 + 𝑠) = 𝑟 + 𝑠1 = 𝑟1 + 𝑠1 = 𝜂(𝑟) + 𝜂(𝑠) , 𝜂(𝑟 𝑠) = 𝑟 𝑠1 = (𝑟1) ( 𝑠1) = 𝜂(𝑟) 𝜂(𝑠) ,
and 𝜂(1) = 1/1. For any element 𝑑 in 𝐷, the multiplicative inverse
of the element 𝑑/1 in 𝑅[𝐷−1] is 1/𝑑.

Finally, consider a ring homomorphism 𝜓∶ 𝑅 → 𝑆 such that
the elements in the image 𝜓(𝐷) are units. There exists a map𝜓∶𝑅[𝐷−1] → 𝑆 defined, for any equivalence class 𝑟/𝑑 in 𝑅[𝐷−1],
by 𝜓(𝑟/𝑑) ∶= 𝜓(𝑟)(𝜓(𝑑))−1. When 𝑟/𝑑 = 𝑟′/𝑑′, there exists an
element 𝑐 in 𝐷 such that 𝑐 (𝑟 𝑑′ − 𝑟′ 𝑑) = 0 which implies that𝜓(𝑐) (𝜓(𝑟)𝜓(𝑑′)−𝜓(𝑟′)𝜓(𝑑)) = 0. As 𝜓(𝑐), 𝜓(𝑑) and 𝜓(𝑑′) are units,
we obtain 𝜓(𝑟)(𝜓(𝑑))−1 = 𝜓(𝑟′)(𝜓(𝑑′))−1. Since𝜓(𝑟/𝑑 + 𝑠/𝑒) = 𝜓((𝑟 𝑒 + 𝑠𝑑)/(𝑑 𝑒)) = 𝜓(𝑟 𝑒 + 𝑠𝑑)(𝜓(𝑑 𝑒))−1= (𝜓(𝑟)𝜓(𝑒) + 𝜓(𝑠)𝜓(𝑑))(𝜓(𝑑))−1(𝜓(𝑒))−1= 𝜓(𝑟)(𝜓(𝑑))−1+ 𝜓(𝑠)(𝜓(𝑒))−1= 𝜓(𝑟/𝑑) + 𝜓(𝑠/𝑒) ,𝜓((𝑟/𝑑)(𝑠/𝑒)) = 𝜓((𝑟 𝑠)/(𝑑 𝑒)) = 𝜓(𝑟 𝑠)(𝜓(𝑑 𝑒))−1= 𝜓(𝑟)𝜓(𝑠) (𝜓(𝑑))−1 (𝜓(𝑒))−1= 𝜓(𝑟)(𝜓(𝑑))−1 𝜓(𝑠) (𝜓(𝑒))−1 = 𝜓(𝑟/𝑑)𝜓(𝑠/𝑒) ,
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and 𝜓(1/1) = 𝜓(1𝑅)(𝜓(1𝑅))−1 = 1𝑆(1𝑆)−1 = 1𝑆, the map 𝜓′ is a ring
homomorphism. By construction, we have 𝜓𝜂 = 𝜓. Moreover,
the map 𝜓 is determined by this equation because we have both𝜓(𝑟/𝑠) = 𝜓((𝑟/1)(1/𝑠)) = 𝜓(𝑟/1)𝜓(1/𝑠) = 𝜓(𝑟)𝜓(1/𝑠) and 1 =𝜓(1/1) = 𝜓(1/𝑠)𝜓(𝑠/1) = 𝜓(1/𝑠)𝜓(𝑠).
Remark 7.0.3. The kernel of the unique map 𝜂∶𝑅→𝑅[𝐷−1] is the
set elements 𝑟 in 𝑅 such that there exists 𝑑 in 𝐷 such that 𝑟 𝑑 = 0.
For the map 𝜂 to be injective, it is necessary and sufficient that the
set 𝐷 contain no zero divisor in 𝑅.

When 0 ∈ 𝐷, the ring 𝑅[𝐷−1] is the
zero ring.

Definition 7.0.4. When multiplicative set 𝐷 consists of the
nonzero divisors in commutative ring 𝑅, the ring 𝑅[𝐷−1] is the
total ring of fractions. When 𝑅 is a domain, the ring 𝑅[𝐷−1] is the
field of fractions of 𝑅.

Exercises

Problem 7.0.5. Consider two multiplicative subsets 𝐷 and 𝐸 a
commutative ring 𝑅 satisfying 𝐷 ⊆ 𝐸. Let 𝜑∶𝑅[𝐷−1]→𝑅[𝐸−1] be
the ring homomorphism defined, for any fraction 𝑟/𝑑 in 𝑅[𝐷−1],
by 𝜑(𝑟/𝑑) = 𝑟/𝑑. Show that the following are equivalent:
(a) The map 𝜑 is a ring isomorphism.
(b) For any element 𝑒 in 𝐸, the fraction 𝑒/1 is a unit in 𝑅[𝐷−1].
(c) For any element 𝑒 in 𝐸, there exists an element 𝑠 in 𝑅 such

that 𝑒 𝑠 ∈ 𝐷.

7.1 Recognizing Fields

How do we identify fields among all commutative rings? Fields are
characterized via their ideals and their ring homomorphisms.

Theorem 7.1.0. For any nonzero commutative ring 𝑅, the following are
equivalent:
(a) The ring 𝑅 is a field.
(b) The only ideals in 𝑅 are ⟨0⟩ and ⟨1⟩.
(c) Every ring homomorphism from 𝑅 to a nonzero ring is injective.

Proof.
(a) ⇒ (b): Let 𝐼 be a nonzero ideal in 𝑅. Choose 0 ≠ 𝑟 ∈ 𝐼. The ring

element 𝑟 is a unit, so 𝑅 = ⟨1⟩ = ⟨𝑟⟩ ⊆ 𝐼 ⊆ 𝑅 and 𝐼 = 𝑅.
(b) ⇒ (c): Let 𝑆 be a nonzero ring. For any ring homomorphism𝜑∶ 𝑅 → 𝑆, the ideal Ker(𝜑) is a proper ideal. It follows that

Ker(𝜑) = ⟨0⟩ and the map 𝜑 is injective.
(c) ⇒ (a): Consider an element 𝑟 in 𝑅 that is not a unit. Hence, we

have ⟨𝑟⟩ ≠ ⟨1⟩ and 𝑆 ∶= 𝑅/⟨𝑟⟩ is not the zero ring. Let 𝜋∶𝑅→𝑆 be
the canonical surjection. By hypothesis, the map 𝜋 is injective,
so ⟨𝑟⟩ = Ker(𝜑) = ⟨0⟩ and 𝑟 = 0.
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As a counterpoint to the previous theorem, we also want to
determine when a quotient ring is a field and when there exists a
surjective ring homomorphism onto a field.

Definition 7.1.1. Let 𝑅 be a ring. By an abuse of language, an ideal𝐼 is maximal if its a maximal element (under inclusion) in the set of
ideals distinct from 𝑅. In other words, an ideal 𝐼 is maximal if and
only if 𝐼 ≠ ⟨1⟩ and the only ideals containing 𝐼 are 𝐼 and 𝑅.

Corollary 7.1.2. An ideal 𝐼 in a commutative ring 𝑅 is maximal if and
only if the quotient ring 𝑅/𝐼 is a field.

Proof. The Correspondence Theorem 6.2.0 shows that the ideals
in 𝑅 containing 𝐼 are in bijection with the ideals in the quotient
ring 𝑅/𝐼. Theorem 7.1.0 demonstrates that the ring 𝑅/𝐼 is a field if
and only if and only if it has two ideals: ⟨0⟩ and ⟨1⟩. It follows that
the only ideals containing 𝐼 are 𝐼 and 𝑅 if and only if the quotient
ring 𝑅/𝐼 is a field.

Remark 7.1.3. Theorem 2.2.4 demonstrates that the maximal
ideals in the ring ℤ are precisely the principal ideals generated by
a prime integer.

Theorem 7.1.4 (Krull 1929). Every nonzero commutative ring 𝑅 has
a maximal ideal. Moreover, every proper ideal 𝐼 in 𝑅 is contained in a
maximal ideal.

Corollary 7.1.5. There exists a surjective ring homomorphism from any
nonzero commutative ring to a field.

Proof. Let 𝑅 be a nonzero commutative ring. By Theorem 7.1.4,
there exists a maximal ideal 𝑀 in 𝑅. Since Corollary 7.1.2 shows
that the quotient ring 𝑅/𝑀 is a field, the canonical surjection𝜋∶𝑅→𝑅/𝐼 provides the desired ring homomorphism.

To prove Theorem 7.1.4 requires an new axiom from set theory.

Definition 7.1.6. A partially ordered set or poset 𝒳 is a set together
with an order relation ≼ such that

Reflexive: For any element 𝑥 ∈ 𝒳, we have 𝑥 ≼ 𝑥.
Antisymmetric: The relations 𝑥 ≼ 𝑦 and 𝑦 ≼ 𝑥 imply that 𝑥 = 𝑦.

Transitive: The relations 𝑥 ≼ 𝑦 and 𝑦 ≼ 𝑧 imply that 𝑥 ≼ 𝑧.
Two elements 𝑥 and 𝑦 in 𝒳 are comparable if 𝑥 ≼ 𝑦 or 𝑦 ≼ 𝑥. A
chain in 𝒳 is a subset where any two elements are comparable. An
upper bound for a nonempty subset 𝒴 of 𝒳 is an element 𝑥 in 𝒳
such that, for any element 𝑦 in 𝒴, we have 𝑦 ≼ 𝑥. A maximal element
of a nonempty subset 𝒴 is an element 𝑦 in 𝒴 such that, for any
element 𝑧 in 𝒴, we have 𝑧 ≼ 𝑦.

The adjective “partial” indicates that
not every pair of elements in a
partially ordered set is required to be
comparable under the order relation.
In other words, there may be
elements 𝑥 and 𝑦 such that neither𝑥 ≼ 𝑦 nor 𝑦 ≼ 𝑥 hold.

Examples 7.1.7. Standard examples of posets include⦁ the real numbers ordered by the standard inequality ⩽,⦁ the set of subsets of a given set ordered by inclusion ⊆,
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⦁ the set of nonnegative integers ordered by divisibility, and⦁ the set of ideals in a commutative ring ordered by inclusion.

8 12
4 6 10 15

2 3 5
1

Figure 7.2: Part of the Hasse
diagram for the poset ℕ ordered
by divisibility

Remark 7.1.8. Posets may not have maximal elements. For ex‑
ample, real numbers ℝ, with the usual ordering, has no maximal
elements.

Axiom 7.1.9 (Zorn’s Lemma). Any nonempty poset, in which every
chain has an upper bound, has a maximal element. ◼ Zorn’s Lemma is equivalent to the

Axiom of Choice. Kazimierz Kura‑
towski (1922) proved a variant and
Max Zorn (1935) proposed it as a new
axiom of set theory.Remark 7.1.10. Zorn’s Lemma is a strengthening of the Well‑Order

Principle 0.2.6 or the Principle of Induction 0.0.0.

Proof of Krull’s Theorem. The second statement implies the first,
because the ideal ⟨0⟩ is a proper ideal in any nonzero ring.

Let 𝐼 be a proper ideal in 𝑅. Consider the set 𝒳 of all ideals in𝑅 that contain 𝐼 and are not equal to 𝑅. Since 𝐼 ∈ 𝒳, the set 𝒳
is nonempty. Partially order 𝒳 by inclusion. Suppose that 𝐶 is a
chain in 𝒳: for any ideals 𝐽 and 𝐾 in 𝐶, we have either 𝐽 ⊆ 𝐾 or𝐾 ⊆ 𝐽. We claim that 𝐽∗ ∶= ⋃𝐽∈𝐶 𝐽 is an upper bound of 𝐶. For
any ideal 𝐽 in 𝐶, we clearly have 𝐽 ⊆ 𝐽∗. It remains to prove that 𝐽∗
is a proper ideal. For any elements 𝑓 and 𝑔 in 𝐽∗ and any element𝑟 in 𝑅, it follows that 𝑓 and 𝑔 in 𝐽 for some ideal 𝐽 in the chain 𝐶.
Since the elements 𝑓 + 𝑔 and 𝑟 𝑓 both belong to 𝐽, the elements𝑓 + 𝑔 and 𝑟 𝑓 also belong to 𝐽∗, so 𝐽∗ is an ideal. If 𝐽∗ = 𝑅, then
we would have 1 ∈ 𝐽∗ and 1 ∈ 𝐽 for some ideal 𝐽 in the chain 𝐶
which contradicts assumption that 𝐽 ≠ 𝑅. As every chain in 𝒳 has
an upper bound, Zorn’s Lemma provides a maximal element.

Remark 7.1.11. Zorn’s Lemma is needed to prove that every vector
space has a basis and that every field has an algebraic closure.

Exercises

Problem 7.1.12. Prove that ℤ/⟨512⟩ has exactly one maximal ideal.


