9 Special Domains

Copyright © 2023, Gregory G. Smith Last Updated: 26 March 2023

Beyond division with remainder, there are a couple features that distinguish the archetypal rings \mathbb{Z} and $\mathbb{K}[x]$ from other domains. We present a hierarchy of commutative rings that includes commutative domains, unique factorization domains, principal ideal domains, Euclidean domains, and fields.

9.0 Principal Ideal Domains

What are the simplest ideals? We consider a kind of ring having only uncomplicated ideals.

Definition 9.0.0. A *principal ideal domain* is a commutative domain in which every ideal is generated by a single element. A *principal* ideal is any ideal generated by a single ring element.

Division with remainder leads to principal ideals.

Theorem 9.0.1. Every Euclidean domain is a principal ideal domain.

Proof. Let *I* be an ideal in a Euclidean domain *R* with Euclidean function ν : $R \setminus \{0\} \rightarrow \mathbb{N}$. When $I = \langle 0 \rangle$, the ideal *I* is principal, so we may assume $I \neq \langle 0 \rangle$. By the Well-Ordering 0.2.6 of the nonnegative integers, the set $\{\nu(f) \in \mathbb{N} \mid f \in I \setminus \{0\}\}$ has a minimum, say *m*. Choose an element *g* in the ideal *I* with $\nu(g) = m$. As $g \in I$, we have $\langle g \rangle \subseteq I$. For any element *f* in *I*, there exists elements *q* and *r* in the Euclidean domain *R* such that f = qg + r and either r = 0 or $\nu(r) < \nu(g)$. Since $r = f - qg \in I$, our choice of *g* implies that r = 0. We deduce that f = qg and $I \subseteq \langle g \rangle$. Thus, we conclude that $I = \langle g \rangle$.

Remark 9.0.2. Theorem 1.1.2, Theorem 4.0.4, and Problem 8.1.5 show that the ring \mathbb{Z} of integers, the ring $\mathbb{K}[x]$ of univariate polynomials over the field \mathbb{K} , and the ring $\mathbb{Z}[i]$ of the Gaussian integers are Euclidean domains, so these rings are principal ideal domains.

Many commutative domains are not principal ideal domains.

Problem 9.0.3. Show that the ideal (2, x) in $\mathbb{Z}[x]$ is not principal.

Solution. Suppose that there exists an element g in $\mathbb{Z}[x]$ such that $\langle g \rangle = \langle 2, x \rangle$. It would follow that f g = 2 for some polynomial f in $\mathbb{Z}[x]$. Since deg(g) + deg(f) = deg(2) = 0, we would deduce that g is an integer. We would thereby obtain $g = \{\pm 1, \pm 2\}$ because 2 is a prime integer. Because $\langle 2, x \rangle$ is a maximal ideal in $\mathbb{Z}[x]$, the element g cannot be a unit, so $g = \pm 2$. However, we would also have $x \in \langle g \rangle$, so x = 2h for some polynomial h in $\mathbb{Z}[x]$ which yields contradiction by mapping to $(\mathbb{Z}/\langle 2 \rangle)[x]$.

Problem 9.0.4. Demonstrate that the ideal $(2, 1 - \sqrt{-3})$ in $\mathbb{Z}[\sqrt{-3}]$ (which is a subring of the field \mathbb{C}) is not principal.

Solution. Suppose that there exists integers *a* and *b* such that $\langle a + b\sqrt{-3} \rangle = \langle 2, 1 - \sqrt{-3} \rangle$. It follows that $f(a + b\sqrt{-3}) = 2$ for some element f in $\mathbb{Z}[\sqrt{-3}]$. Taking absolute values in \mathbb{C} gives $|f|(a^2 + 3b^2) = 2$, so $a^2 + 3b^2 \in \{\pm 1, \pm 2\}$. Because *a* and *b* integers, we must have $a = \pm 1$ and b = 0 which contradicts the fact that $\langle 2, 1 - \sqrt{-3} \rangle$ is a maximal ideal.

In a principal ideal domain, the sum of two principal ideals is generated by a greatest common divisor.

Theorem 9.0.5. Let *R* be a principal ideal domain. For any nonzero elements *f* and *g* in *R*, there exists elements *r* and *s* in *R* such that gcd(f,g) = rf + sg. In particular, we have $\langle gcd(f,g) \rangle = \langle f,g \rangle$.

Proof. Set $I := \langle f, g \rangle$. Since *R* is a principal ideal domain, there is a element *d* in *R* such that $I = \langle d \rangle$. It follows that d = rf + sg for some elements *r* and *s* in *R*. Both *f* and *g* are in *I* and *I* is generated by *d*, so *d* divides *f* and *g*. On the other hand, if an element *c* in *R* divides *f* and *g*, then *c* divides rf + sg = d. Hence, we see that $d = \gcd(f, g)$.

Any generator for the ideal $\langle f, g \rangle$ is a greatest common divisor of f and g. Lemma 8.1.9 shows that, for any two greatest common divisors d and e, there exists a unit u in R such that e = u d and $d = u^{-1} e$. Thus, we have $\langle e \rangle \subseteq \langle d \rangle$ and $\langle d \rangle \subseteq \langle e \rangle$, so $\langle d \rangle = \langle e \rangle$.

We extend the concept of irreducibility to elements in any commutative ring; compare with Definition 1.2.4.

Definition 9.0.6. A ring element f is *irreducible* if f is nonzero, f is not a unit, and the equation f = gh implies that g or h is a unit.

Example 9.0.7. The finite ring $\mathbb{Z}/\langle 6 \rangle$ has no irreducible elements because $(\mathbb{Z}/\langle 6 \rangle)^{\times} = \{1, 5\}, 2 = (2)(4), 3 = (3)(3), \text{ and } 4 = (2)(2)$. Without irreducibles, an element may have many factorizations: $4 = (2)(2) = (2)(2)(2)(2) = (2)(2)(2)(2) = \cdots$.

Lemma 9.0.8. Let *R* be a commutative domain. For any prime ideal $\langle g \rangle$ in *R*, the ring element *g* is irreducible.

Proof. Suppose that g = f h. Since the principal ideal $\langle g \rangle$ is prime, Theorem 8.0.4 shows that the element g divides f or h. We may assume that g divides f and there exists an element q in R such that g f = q g. It follows that g = f h = q g h. Since R is a domain, we deduce that 1 = q h, so h is a unit and g is irreducible.

Example 9.0.9. Consider the subring $\mathbb{C}[x^2, x^3] \subset \mathbb{C}[x]$. Comparing degrees, we see that the elements x^2 and x^3 are irreducible. They are not prime because x^2 divides $(x^3)^2 = x^6$ but x^2 does not divide x^3 and x^3 divides $x^4 x^2 = x^6$ but x^3 does not divide either x^4 or x^2 .

A domain in which a greatest common divisor of every pair of nonzero elements is a linear combination of the two elements is a *Bézout domain*. **Problem 9.0.10.** Demonstrate that $2 \in \mathbb{Z}[\sqrt{-3}]$ is irreducible but the ideal $\langle 2 \rangle$ is not prime.

Solution. Suppose $2 = (a + b\sqrt{-3})(c + d\sqrt{-3}))$ for some integers a, b, c, and d. Taking conjugates gives $2 = (a - b\sqrt{-3})(c - d\sqrt{-3})$. Multiplying these equations gives $4 = (a^2 + 3b^2)(c^2 + 3d^2)$. Since the equation $x^2 + 3y^2 = 2$ has no integral solutions, it follows that $a^2 + 3b^2 = 1$, so $a = \pm 1$ and b = 0. Since $2(p + q\sqrt{-3}) = 1$ has no integral solutions, the ring element 2 is not a unit. We see that 2 is irreducible. To see that 2 is not prime, observe that 2 divides $4 = (1 + \sqrt{-3})(1 - \sqrt{-3})$, but 2 does not divide either factor.

Proposition 9.0.11. *Let R be a principal ideal domain. For any element f in R, the following are equivalent:*

- (a) The element f in R is irreducible.
- (b) The principal ideal $\langle f \rangle$ is nonzero and maximal.
- (c) The principal ideal $\langle f \rangle$ is nonzero and prime.

Proof.

(a) \Rightarrow (b): Suppose that we have the inclusion $\langle f \rangle \subseteq \langle g \rangle$ for some element *g* in *R*. Equivalently, there exists an element *q* in *R* such that f = q g. Since *f* is irreducible, either *g* or *q* is a unit, so $\langle f \rangle = \langle g \rangle$ or $\langle g \rangle = \langle 1 \rangle = R$. Because every ideal is prinicipal, we deduce that $\langle f \rangle$ is maximal.

(b) \Rightarrow (c): Every nonzero maximal ideal is a nonzero prime ideal. (c) \Rightarrow (a): Follows from Lemma 9.0.8.

Exercises

Problem 9.0.12. Consider the subring $\mathbb{Z}[\sqrt{-5}] := \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$

of field $\mathbb C$ of complex numbers

- (i) Show that the norm function N: Z[√-5] → Z defined by N(a + b√-5) = a² + 5b² is compatible with multiplication, meaning that the norm of a product is equal to the product of the norms of the factors.
- (ii) Confirm that $2 + \sqrt{-5}$ is an irreducible element in $\mathbb{Z}[\sqrt{-5}]$.
- (iii) Verify that the ideal $(2 + \sqrt{-5})$ is not prime in $\mathbb{Z}[\sqrt{-5}]$.

9.1 Unique Factorization Domains

When can we factor ring elements? We propose a class of rings in which every element has a unique factorization.

Definition 9.1.0. A commutative domain *R* is a *unique factorization domain* if, for nonzero element *f* in *R*, there exists a unit *u* in *R*, finitely many distinct irreducible elements $g_1, g_2, ..., g_m$ in *R*, and positive integers $e_1, e_2, ..., e_m$ such that

$$f = u g_1^{e_1} g_2^{e_2} \cdots g_m^{e_m} = u \prod_{j=1}^m g_j^{e_j},$$

and this factorization is unique up to reordering the factors.

Remark 9.1.1. The Fundamental Theorem of Arithmetic 1.2.10 shows that the ring \mathbb{Z} of integers is a unique factorization domain.

Being a unique factorization domains requires the converse of Lemma 9.0.8 to hold.

Proposition 9.1.2. Let *R* be a commutative domain in which every nonzero nonunit is a product of irreducibles. The ring *R* is a unique factorization domain if and only if, for any irreducible element f in *R*, the principal ideal $\langle f \rangle$ is prime.

Proof. We prove each implication separately.

- ⇒: Suppose that the ring *R* is a unique factorization domain. For any elements *g* and *h* in *R* such that the product *g h* belongs to the principal ideal $\langle f \rangle$, there exists an element *q* in *R* such that g h = q f. Factor *g*, *h*, and *q* into irreducibles. Uniqueness of the factorizations implies that the irreducible *u f*, for some unit *u* in *R*, appears on the left side. This element arose as a factor of either *g* or *h*, so we see that $g \in \langle f \rangle$ or $h \in \langle f \rangle$. Theorem 8.0.4 shows the principal ideal $\langle f \rangle$ is prime.
- ⇐: Suppose that any principal ideal generated by an irreducible element is prime. Consider two factorizations

$$g_1 g_2 \cdots g_m = h_1 h_2 \cdots h_n$$

where the elements g_i in R and h_k in R are irreducible for all $1 \leq j \leq m$ and $1 \leq k \leq n$. We proceed, by induction on $\max(m, n)$, to show that m = n and $g_i = c_i h_{\sigma(i)}$ for some units c_i in *R* and some permutation σ of the set $[m] := \{1, 2, ..., m\}$. The base case max(m, n) = 1 has $g_1 = h_1$ and the claim is trivial. For the inductive step, the given equation shows that g_m divides $h_1 h_2 \cdots h_n$. By hypothesis, the principal ideal $\langle g_m \rangle$ is prime, so there exists an index k such that $1 \le k \le n$ and g_m divides h_k . Since h_k is irreducible, there exists a unit c_k such that $g_m = c_k h_k$. Canceling the element g_1 from both sides yields $g_1 g_2 \cdots g_{m-1} = c_k h_1 h_2 \cdots h_{k-1} h_{k+1} \cdots h_n$. The induction hypothesis establishes that m - 1 = n - 1 and $g_i = c_i h_{\sigma'(i)}$ for some units c_i in R, for all $2 \le j \le m - 1$, and some bijection σ' from $\{1, 2, ..., m-1\}$ to $\{1, 2, ..., k-1, k+1, m\}$. Setting $\sigma(j) = \sigma'(j)$ if $j \neq m$ and $\sigma(m) = k$ yields the required permutation.

To demonstrate that every principal ideal domain is a unique factorization domain, we must show that every nonzero nonunit is a product of irreducibles.

Lemma 9.1.3. Let *R* be a commutative domain. For any nonzero nonunit *f* in *R* that does not admit a factorization into irreducibles, there is a proper inclusion $\langle f \rangle \subset \langle g \rangle$ of principal ideals in *R* where the element *g* is another nonzero nonunit that does not admit a factorization into irreducibles.

Proof. By hypothesis, the element f is not irreducible. Hence, there are nonzero nonunits g and h such that f = gh. If both g and h admitted factorizations into irreducibles, then f also would. We may assume that the element g does not admit a factorization into irreducibles. Since h is not a unit, the inclusion $\langle f \rangle \subset \langle g \rangle$ of principal ideals is proper.

Theorem 9.1.4. *Every nonzero nonunit in any principal ideal domain is a product of irreducibles.*

Proof. Let *R* be a principal ideal domain. Suppose that there exists a nonzero nonunit f_0 in *R* that does not admit a factorization into irreducibles. Lemma 9.1.3 gives a strict inclusion $\langle f_0 \rangle \subset \langle f_1 \rangle$ where f_1 is a nonzero nonunit that does not admit a factorization into irreducibles. Iterating this step produces an infinite increasing chain $\langle f_0 \rangle \subset \langle f_1 \rangle \subset \langle f_2 \rangle \subset \cdots$ of principal ideals in *R*. We claim that this is impossible.

Suppose that the principal ideal domain *R* contains an infinite increasing chain $I_0 \subset I_1 \subset I_2 \subset \cdots$ of ideal. Set $I := \bigcup_{j \in \mathbb{N}} I_j$. The union *I* is an ideal: every finite set of elements in *I* lies in a common I_j , so *I* is closed under addition and multiplication by elements from *R* because I_j has these properties. Since *R* is a principal ideal domain, there exists an element *g* in *R* such that $I = \langle g \rangle$. The set *I* is a union, so the element *g* belongs to I_k for some index *k*. It follows that $I = \langle g \rangle \subset I_k \subseteq I$ and $I_k = I$. However, this is impossible because the inclusion $I_{k+1} \subset I = I_k$ is proper. We conclude that every nonzero nonunit in *R* admits a factorization into irreducibles.

Corollary 9.1.5. Any principal ideal domain is a unique factorization domain.

Proof. Combine Proposition 9.1.2, Proposition 9.0.11 and Theorem 9.1.4.

Exercises

Problem 9.1.6. Let *R* be a principal ideal domain. For any two distinct nonzero elements *f* and *g* with no common irreducible factor, prove that $\langle f \rangle + \langle g \rangle = \langle 1 \rangle$.

Problem 9.1.7. Let *R* be a unique factorization domain such that the sum of two principal ideals in *R* is again a principal ideal. Prove that *R* is a principal ideal domain.

9.2 Non-Euclidean Principal Ideal Domains

How close is a principal ideal domain to being Euclidean? These two classes of commutative domains are distinct but the differ-

The assertion is vacuous in a field.

Emmy Noether pioneered the *ascending chain condition*, which asserts that no infinite increasing chain of ideal exists. Rings that satisfy this condition are known as *noetherian rings*. The second paragraph in the proof of Theorem 9.1.4 shows that every principal ideal domain is noetherian.

ence is surprisingly small. We start by demonstrating that a principal ideal domain is "just" a Euclidean domain with more general notion of a Euclidean function.

Definition 9.2.0. Let *R* be a commutative domain. A *Dedekind– Hasse function* is a function δ : $R \setminus \{0\} \rightarrow \mathbb{N}$ such that, for all nonzero element *f* and *g* in *R*, either *g* divides *f* or there exists elements *s* and *t* in *R* such that $\delta(s f + t g) < \delta(g)$.

Remark 9.2.1. Any Euclidean function ν : $R \setminus \{0\} \rightarrow \mathbb{N}$ is a Dedekind–Hasse function with (s, t) = (1, -q) and f - qg = r.

Proposition 9.2.2. A commutative domain is a principal ideal domain if and only if it possesses a Dedekind–Hasse function.

Proof. Let *R* be a commutative domain. We establish the two implications separately.

- ⇒: Suppose that *R* has a Dedekind–Hasse function δ : $R \setminus \{0\} \rightarrow \mathbb{N}$ and let *I* be a nonzero ideal. By the Well-Ordering 0.2.6 of the nonnegative integers, the set $\{\delta(f) \in \mathbb{N} \mid f \in I \setminus \{0\}\}$ has a minimum, say *m*. Choose an element *g* in the ideal *I* with $\delta(g) = m$. As $g \in I$, we have $\langle g \rangle \subseteq I$. Consider an element *f* in *I* such that *g* does not divide *f*. There exists elements *s* and *t* in *R* such that $\delta(s f + t g) < \delta(g)$. Since s f + t g is in *I*, this contradicts our choice of *g*. We deduce that *g* does divide *f* and $I \subseteq \langle g \rangle$. Thus, we obtain $I = \langle g \rangle$.
- \Leftarrow : Suppose that *R* is a principal ideal domain. Corollary 9.1.5 shows that *R* is a unique factorization domain. Define the function δ: *R* \ {0} → ℕ by δ(*f*) = 2^{*e*} where *e* is the number of irreducible factors appearing in the factorization of *f*. Consider an element *f* in *R* and a nonzero element *g* in *R*. Suppose that *g* does not divide *f*. There exists a nonzero element *r* in *R* such that $\langle f, g \rangle = \langle d \rangle$. In particular, there exists elements *s* and *t* in *R* such that *s f* + *t g* = *d*. It follows that *d* divides *g*. However, *g* does not divide *d*, because this would imply that *g* divides *f*. We deduce that there are strictly fewer irreducible elements in the factorization of *d* than in the factorization of *g*, so $\delta(r) < \delta(g)$. We conclude that δ is the required Dedekind– Hasse function.

Nevertheless, there is a difference between a principal ideal domain and a Euclidean domain. To exhibit this difference, we document a characteristic of a Euclidean domain.

Lemma 9.2.3. For any Euclidean domain R that is not a field, there exists an element g in R such that the quotient ring $R/\langle g \rangle$ has a system of distinct representative consisting of the 0 and units in R.

Proof. Let ν : $R \setminus \{0\} \to \mathbb{N}$ be a Euclidean function on R. There exists a nonzero nonunits in R because R is not a field. By the

Well-Ordering 0.2.6 of the nonnegative integers, the set

 $\{\nu(f) \in \mathbb{N} \mid f \text{ is a nonzero nonunit in } R\}$ has a minimum, say *m*. Choose a nonzero nonunit *g* in the ring *R* with $\nu(g) = m$. For any element *f* in *R*, division with remainder implies that there exists elements *q* and *r* in *R* such that f = qg + rand either r = 0 or $\nu(r) < \nu(g)$. When $r \neq 0$, the inequality $\nu(r) < \nu(g)$ forces *r* to be a unit. Since $f + \langle g \rangle = r + \langle g \rangle$, we conclude that the quotient ring $R / \langle g \rangle$ has a system of distinct representatives consisting of the 0 and units in *R*.

Proposition 9.2.4. The quotient ring $\mathbb{R}[x, y] / \langle x^2 + y^2 + 1 \rangle$ is a principal ideal domain but not a Euclidean domain.

Sketch of Proof. We address the two assertions separately.

We prove that the ring R[x, y]/⟨x² + y² +1⟩ is not a Euclidean domain. Regarding the ring R[x, y] as (R[x])[y], division with remainder establishes that any polynomial in R[x, y] has a unique expression of the form q (y² + x² + 1) + (a + b y) where q is in R[x, y] and a and b are in R[x]. Hence, the quotient ring R[x, y]/⟨x² + y² + 1⟩ has a system of distinct representatives a + b y for some a and b in R[x]. Since y² = -1 - x² in the quotient ring R[x, y]/⟨x² + y² + 1⟩, we can think of this ring as

 $(\mathbb{R}[x])[\sqrt{-1-x^2}] := \{a+b\sqrt{-1-x^2} \mid a, b \in \mathbb{R}[x]\}.$

We claim that the units in the ring *R* are precisely the units in the field \mathbb{R} . Consider the norm function N: $R \to \mathbb{R}[x]$ defined, for any *a* and *b* in $\mathbb{R}[x]$, by

$$\begin{split} \mathsf{N}(a+b\,y) &= (a+b\,y)(a-b\,y) = a^2 - b^2\,y^2 = a^2 + (x^2+1)\,b^2\,.\\ \text{For any } a, b, c, \text{ and } d \text{ in } \mathbb{R}[x], \text{ we have} \\ \mathsf{N}((a+b\,y)(c+d\,y)) &= \mathsf{N}((a\,c - (x^2+1)\,b\,d) + (a\,d+b\,c)\,y) \\ &= ((a\,c - (x^2+1)\,b\,d) + (a\,d+b\,c)\,y)((a\,c - (x^2+1)\,b\,d) - (a\,d+b\,c)\,y) \\ &= ((a+b\,y)(c+d\,y))((a-b\,y)(c-d\,y)) \\ &= ((a+b\,y)(a-b\,y))((c+d\,y)(c-d\,y)) \\ &= \mathsf{N}(a+b\,y)\,\mathsf{N}(c+b\,y)\,. \end{split}$$

Since N is a multiplicative function, a unit in *R* must have a norm that is a unit in $\mathbb{R}[x]$ or equivalently a unit in \mathbb{R} . The only way for $a^2 + (x^2 + 1)b^2$ to belong to \mathbb{R} is to have b = 0 and $a \in \mathbb{R}$.

Suppose that *R* is a Euclidean domain. By Lemma 9.2.3, there would be a nonzero nonunit *g* in *R* such that the quotient ring $R/\langle g \rangle$ has a system of distinct representative consisting of the 0 and units in *R*. Hence, the composition of the canonical ring homomorphisms $\mathbb{R} \to \mathbb{R}[x] \to R \to R/\langle g \rangle$ is surjective. Since every ring homomorphism from a field is injective, this composition is a ring isomorphism. Choosing real numbers *r* and *s* such that $x + \langle g \rangle = r + \langle g \rangle$ and $y + \langle g \rangle = s + \langle g \rangle$, it follows that $r^2 + s^2 + 1 = 0$ in \mathbb{R} which is a contradiction.

• To prove that *R* is a principal ideal domain, one exhibits a Dedekind–Hasse function.