9 Special Domains

Beyond division with remainder, there are a couple features that distinguish the archetypal rings \mathbb{Z} and $\mathbb{K}[x]$ from other domains. We present a hierarchy of commutative rings that includes commutative domains, unique factorization domains, principal ideal domains, Euclidean domains, and fields.

9.0 Principal Ideal Domains

What are the simplest ideals? We consider a kind of ring having only uncomplicated ideals.

Definition 9.0.0. A principal ideal domain is a commutative domain in which every ideal is generated by a single element. A principal ideal is any ideal generated by a single ring element.

Division with remainder leads to principal ideals.
Theorem 9.0.1. Every Euclidean domain is a principal ideal domain.
Proof. Let I be an ideal in a Euclidean domain R with Euclidean function $\nu: R \backslash\{0\} \rightarrow \mathbb{N}$. When $I=\langle 0\rangle$, the ideal I is principal, so we may assume $I \neq\langle 0\rangle$. By the Well-Ordering 0.2.6 of the nonnegative integers, the set $\{\nu(f) \in \mathbb{N} \mid f \in I \backslash\{0\}\}$ has a minimum, say m. Choose an element g in the ideal I with $\nu(g)=m$. As $g \in I$, we have $\langle g\rangle \subseteq I$. For any element f in I, there exists elements q and r in the Euclidean domain R such that $f=q g+r$ and either $r=0$ or $\nu(r)<\nu(g)$. Since $r=f-q g \in I$, our choice of g implies that $r=0$. We deduce that $f=q g$ and $I \subseteq\langle g\rangle$. Thus, we conclude that $I=\langle g\rangle$.

Remark 9.0.2. Theorem 1.1.2, Theorem 4.0.4, and Problem 8.1.5 show that the ring \mathbb{Z} of integers, the ring $\mathbb{K}[x]$ of univariate polynomials over the field \mathbb{K}, and the ring $\mathbb{Z}[i]$ of the Gaussian integers are Euclidean domains, so these rings are principal ideal domains.

Many commutative domains are not principal ideal domains.
Problem 9.0.3. Show that the ideal $\langle 2, x\rangle$ in $\mathbb{Z}[x]$ is not principal.
Solution. Suppose that there exists an element g in $\mathbb{Z}[x]$ such that $\langle g\rangle=\langle 2, x\rangle$. It would follow that $f g=2$ for some polynomial f in $\mathbb{Z}[x]$. Since $\operatorname{deg}(g)+\operatorname{deg}(f)=\operatorname{deg}(2)=0$, we would deduce that g is an integer. We would thereby obtain $g=\{ \pm 1, \pm 2\}$ because 2 is a prime integer. Because $\langle 2, x\rangle$ is a maximal ideal in $\mathbb{Z}[x]$, the element g cannot be a unit, so $g= \pm 2$. However, we would also have $x \in\langle g\rangle$, so $x=2 h$ for some polynomial h in $\mathbb{Z}[x]$ which yields contradiction by mapping to $(\mathbb{Z} /\langle 2\rangle)[x]$.

Problem 9.0.4. Demonstrate that the ideal $\langle 2,1-\sqrt{-3}\rangle$ in $\mathbb{Z}[\sqrt{-3}]$ (which is a subring of the field \mathbb{C}) is not principal.

Solution. Suppose that there exists integers a and b such that $\langle a+b \sqrt{-3}\rangle=\langle 2,1-\sqrt{-3}\rangle$. It follows that $f(a+b \sqrt{-3})=2$ for some element f in $\mathbb{Z}[\sqrt{-3}]$. Taking absolute values in \mathbb{C} gives $|f|\left(a^{2}+3 b^{2}\right)=2$, so $a^{2}+3 b^{2} \in\{ \pm 1, \pm 2\}$. Because a and b integers, we must have $a= \pm 1$ and $b=0$ which contradicts the fact that $\langle 2,1-\sqrt{-3}\rangle$ is a maximal ideal.

In a principal ideal domain, the sum of two principal ideals is generated by a greatest common divisor.

Theorem 9.0.5. Let R be a principal ideal domain. For any nonzero elements f and g in R, there exists elements r and s in R such that $\operatorname{gcd}(f, g)=r f+s g$. In particular, we have $\langle\operatorname{gcd}(f, g)\rangle=\langle f, g\rangle$.

Proof. Set $I:=\langle f, g\rangle$. Since R is a principal ideal domain, there is a element d in R such that $I=\langle d\rangle$. It follows that $d=r f+s g$ for some elements r and s in R. Both f and g are in I and I is generated by d, so d divides f and g. On the other hand, if an element c in R divides f and g, then c divides $r f+s g=d$. Hence, we see that $d=\operatorname{gcd}(f, g)$.

Any generator for the ideal $\langle f, g\rangle$ is a greatest common divisor of f and g. Lemma 8.1 .9 shows that, for any two greatest common divisors d and e, there exists a unit u in R such that $e=u d$ and $d=u^{-1} e$. Thus, we have $\langle e\rangle \subseteq\langle d\rangle$ and $\langle d\rangle \subseteq\langle e\rangle$, so $\langle d\rangle=\langle e\rangle$.

We extend the concept of irreducibility to elements in any commutative ring; compare with Definition 1.2.4.

Definition 9.0.6. A ring element f is irreducible if f is nonzero, f is not a unit, and the equation $f=g h$ implies that g or h is a unit.

Example 9.0.7. The finite ring $\mathbb{Z} /\langle 6\rangle$ has no irreducible elements because $(\mathbb{Z} /\langle 6\rangle)^{\times}=\{1,5\}, 2=(2)(4), 3=(3)(3)$, and $4=(2)(2)$. Without irreducibles, an element may have many factorizations: $4=(2)(2)=(2)(2)(2)(2)=(2)(2)(2)(2)(2)(2)=\cdots$.

Lemma 9.0.8. Let R be a commutative domain. For any prime ideal $\langle g\rangle$ in R, the ring element g is irreducible.

Proof. Suppose that $g=f h$. Since the principal ideal $\langle g\rangle$ is prime, Theorem 8.0 .4 shows that the element g divides f or h. We may assume that g divides f and there exists an element q in R such that $g f=q g$. It follows that $g=f h=q g h$. Since R is a domain, we deduce that $1=q h$, so h is a unit and g is irreducible.

Example 9.0.9. Consider the subring $\mathbb{C}\left[x^{2}, x^{3}\right] \subset \mathbb{C}[x]$. Comparing degrees, we see that the elements x^{2} and x^{3} are irreducible. They are not prime because x^{2} divides $\left(x^{3}\right)^{2}=x^{6}$ but x^{2} does not divide x^{3} and x^{3} divides $x^{4} x^{2}=x^{6}$ but x^{3} does not divide either x^{4} or x^{2}.

A domain in which a greatest common divisor of every pair of nonzero elements is a linear combination of the two elements is a Bézout domain.

Problem 9.0.10. Demonstrate that $2 \in \mathbb{Z}[\sqrt{-3}]$ is irreducible but the ideal $\langle 2\rangle$ is not prime.
Solution. Suppose $2=(a+b \sqrt{-3})(c+d \sqrt{-3}))$ for some integers a, b, c, and d. Taking conjugates gives $2=(a-b \sqrt{-3})(c-d \sqrt{-3})$. Multiplying these equations gives $4=\left(a^{2}+3 b^{2}\right)\left(c^{2}+3 d^{2}\right)$. Since the equation $x^{2}+3 y^{2}=2$ has no integral solutions, it follows that $a^{2}+3 b^{2}=1$, so $a= \pm 1$ and $b=0$. Since $2(p+q \sqrt{-3})=1$ has no integral solutions, the ring element 2 is not a unit. We see that 2 is irreducible. To see that 2 is not prime, observe that 2 divides $4=(1+\sqrt{-3})(1-\sqrt{-3})$, but 2 does not divide either factor.

Proposition 9.0.11. Let R be a principal ideal domain. For any element f in R, the following are equivalent:
(a) The element f in R is irreducible.
(b) The principal ideal $\langle f\rangle$ is nonzero and maximal.
(c) The principal ideal $\langle f\rangle$ is nonzero and prime.

Proof.

(a) \Rightarrow (b): Suppose that we have the inclusion $\langle f\rangle \subseteq\langle g\rangle$ for some element g in R. Equivalently, there exists an element q in R such that $f=q g$. Since f is irreducible, either g or q is a unit, so $\langle f\rangle=\langle g\rangle$ or $\langle g\rangle=\langle 1\rangle=R$. Because every ideal is prinicipal, we deduce that $\langle f\rangle$ is maximal.
(b) \Rightarrow (c): Every nonzero maximal ideal is a nonzero prime ideal.
(c) \Rightarrow (a): Follows from Lemma 9.0.8.

Exercises

Problem 9.0.12. Consider the subring

$$
\mathbb{Z}[\sqrt{-5}]:=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\}
$$

of field \mathbb{C} of complex numbers
(i) Show that the norm function $\mathrm{N}: \mathbb{Z}[\sqrt{-5}] \rightarrow \mathbb{Z}$ defined by $\mathrm{N}(a+b \sqrt{-5})=a^{2}+5 b^{2}$ is compatible with multiplication, meaning that the norm of a product is equal to the product of the norms of the factors.
(ii) Confirm that $2+\sqrt{-5}$ is an irreducible element in $\mathbb{Z}[\sqrt{-5}]$.
(iii) Verify that the ideal $\langle 2+\sqrt{-5}\rangle$ is not prime in $\mathbb{Z}[\sqrt{-5}]$.

9.1 Unique Factorization Domains

When can we factor ring elements? We propose a class of rings in which every element has a unique factorization.

Definition 9.1.0. A commutative domain R is a unique factorization domain if, for nonzero element f in R, there exists a unit u in R, finitely many distinct irreducible elements $g_{1}, g_{2}, \ldots, g_{m}$ in R, and positive integers $e_{1}, e_{2}, \ldots, e_{m}$ such that

$$
f=u g_{1}^{e_{1}} g_{2}^{e_{2}} \cdots g_{m}^{e_{m}}=u \prod_{j=1}^{m} g_{j}^{e_{j}},
$$

and this factorization is unique up to reordering the factors.
Remark 9.1.1. The Fundamental Theorem of Arithmetic 1.2.10 shows that the ring \mathbb{Z} of integers is a unique factorization domain.

Being a unique factorization domains requires the converse of Lemma 9.0.8 to hold.

Proposition 9.1.2. Let R be a commutative domain in which every nonzero nonunit is a product of irreducibles. The ring R is a unique factorization domain if and only if, for any irreducible element f in R, the principal ideal $\langle f\rangle$ is prime.

Proof. We prove each implication separately.
\Rightarrow : Suppose that the ring R is a unique factorization domain. For any elements g and h in R such that the product $g h$ belongs to the principal ideal $\langle f\rangle$, there exists an element q in R such that $g h=q f$. Factor g, h, and q into irreducibles. Uniqueness of the factorizations implies that the irreducible $u f$, for some unit u in R, appears on the left side. This element arose as a factor of either g or h, so we see that $g \in\langle f\rangle$ or $h \in\langle f\rangle$. Theorem 8.0.4 shows the principal ideal $\langle f\rangle$ is prime.
\Leftarrow : Suppose that any principal ideal generated by an irreducible element is prime. Consider two factorizations

$$
g_{1} g_{2} \cdots g_{m}=h_{1} h_{2} \cdots h_{n}
$$

where the elements g_{j} in R and h_{k} in R are irreducible for all $1 \leqslant j \leqslant m$ and $1 \leqslant k \leqslant n$. We proceed, by induction on $\max (m, n)$, to show that $m=n$ and $g_{j}=c_{j} h_{\sigma(j)}$ for some units c_{j} in R and some permutation σ of the set $[m]:=\{1,2, \ldots, m\}$. The base case $\max (m, n)=1$ has $g_{1}=h_{1}$ and the claim is trivial. For the inductive step, the given equation shows that g_{m} divides $h_{1} h_{2} \cdots h_{n}$. By hypothesis, the principal ideal $\left\langle g_{m}\right\rangle$ is prime, so there exists an index k such that $1 \leqslant k \leqslant n$ and g_{m} divides h_{k}. Since h_{k} is irreducible, there exists a unit c_{k} such that $g_{m}=c_{k} h_{k}$. Canceling the element g_{1} from both sides yields $g_{1} g_{2} \cdots g_{m-1}=c_{k} h_{1} h_{2} \cdots h_{k-1} h_{k+1} \cdots h_{n}$. The induction hypothesis establishes that $m-1=n-1$ and $g_{j}=c_{j} h_{\sigma^{\prime}(j)}$ for some units c_{j} in R, for all $2 \leqslant j \leqslant m-1$, and some bijection σ^{\prime} from $\{1,2, \ldots, m-1\}$ to $\{1,2, \ldots, k-1, k+1, m\}$. Setting $\sigma(j)=\sigma^{\prime}(j)$ if $j \neq m$ and $\sigma(m)=k$ yields the required permutation.

To demonstrate that every principal ideal domain is a unique factorization domain, we must show that every nonzero nonunit is a product of irreducibles.

Lemma 9.1.3. Let R be a commutative domain. For any nonzero nonunit f in R that does not admit a factorization into irreducibles, there is a proper inclusion $\langle f\rangle \subset\langle g\rangle$ of principal ideals in R where the element g is another nonzero nonunit that does not admit a factorization into irreducibles.

Proof. By hypothesis, the element f is not irreducible. Hence, there are nonzero nonunits g and h such that $f=g h$. If both g and h admitted factorizations into irreducibles, then f also would. We may assume that the element g does not admit a factorization into irreducibles. Since h is not a unit, the inclusion $\langle f\rangle \subset\langle g\rangle$ of principal ideals is proper.

Theorem 9.1.4. Every nonzero nonunit in any principal ideal domain is a product of irreducibles.

Proof. Let R be a principal ideal domain. Suppose that there exists a nonzero nonunit f_{0} in R that does not admit a factorization into irreducibles. Lemma 9.1.3 gives a strict inclusion $\left\langle f_{0}\right\rangle \subset\left\langle f_{1}\right\rangle$ where f_{1} is a nonzero nonunit that does not admit a factorization into irreducibles. Iterating this step produces an infinite increasing chain $\left\langle f_{0}\right\rangle \subset\left\langle f_{1}\right\rangle \subset\left\langle f_{2}\right\rangle \subset \cdots$ of principal ideals in R. We claim that this is impossible.

Suppose that the principal ideal domain R contains an infinite increasing chain $I_{0} \subset I_{1} \subset I_{2} \subset \cdots$ of ideal. Set $I:=\bigcup_{j \in \mathbb{N}} I_{j}$. The union I is an ideal: every finite set of elements in I lies in a common I_{j}, so I is closed under addition and multiplication by elements from R because I_{j} has these properties. Since R is a principal ideal domain, there exists an element g in R such that $I=\langle g\rangle$. The set I is a union, so the element g belongs to I_{k} for some index k. It follows that $I=\langle g\rangle \subset I_{k} \subseteq I$ and $I_{k}=I$. However, this is impossible because the inclusion $I_{k+1} \subset I=I_{k}$ is proper. We conclude that every nonzero nonunit in R admits a factorization into irreducibles.

Corollary 9.1.5. Any principal ideal domain is a unique factorization

 domain.Proof. Combine Proposition 9.1.2, Proposition 9.0.11 and Theorem 9.1.4.

Exercises

Problem 9.1.6. Let R be a principal ideal domain. For any two distinct nonzero elements f and g with no common irreducible factor, prove that $\langle f\rangle+\langle g\rangle=\langle 1\rangle$.

Problem 9.1.7. Let R be a unique factorization domain such that the sum of two principal ideals in R is again a principal ideal. Prove that R is a principal ideal domain.

9.2 Non-Euclidean Principal Ideal Domains

How close is a principal ideal domain to being Euclidean? These two classes of commutative domains are distinct but the differ-

The assertion is vacuous in a field.

Emmy Noether pioneered the ascending chain condition, which asserts that no infinite increasing chain of ideal exists. Rings that satisfy this condition are known as noetherian rings. The second paragraph in the proof of Theorem 9.1.4 shows that every principal ideal domain is noetherian.
ence is surprisingly small. We start by demonstrating that a principal ideal domain is "just" a Euclidean domain with more general notion of a Euclidean function.

Definition 9.2.0. Let R be a commutative domain. A DedekindHasse function is a function $\delta: R \backslash\{0\} \rightarrow \mathbb{N}$ such that, for all nonzero element f and g in R, either g divides f or there exists elements s and t in R such that $\delta(s f+t g)<\delta(g)$.

Remark 9.2.1. Any Euclidean function $\nu: R \backslash\{0\} \rightarrow \mathbb{N}$ is a DedekindHasse function with $(s, t)=(1,-q)$ and $f-q g=r$.

Proposition 9.2.2. A commutative domain is a principal ideal domain if and only if it possesses a Dedekind-Hasse function.

Proof. Let R be a commutative domain. We establish the two implications separately.
\Rightarrow : Suppose that R has a Dedekind-Hasse function $\delta: R \backslash\{0\} \rightarrow \mathbb{N}$ and let I be a nonzero ideal. By the Well-Ordering 0.2.6 of the nonnegative integers, the set $\{\delta(f) \in \mathbb{N} \mid f \in I \backslash\{0\}\}$ has a minimum, say m. Choose an element g in the ideal I with $\delta(g)=m$. As $g \in I$, we have $\langle g\rangle \subseteq I$. Consider an element f in I such that g does not divide f. There exists elements s and t in R such that $\delta(s f+t g)<\delta(g)$. Since $s f+t g$ is in I, this contradicts our choice of g. We deduce that g does divide f and $I \subseteq\langle g\rangle$. Thus, we obtain $I=\langle g\rangle$.
\Leftarrow : Suppose that R is a principal ideal domain. Corollary 9.1.5 shows that R is a unique factorization domain. Define the function $\delta: R \backslash\{0\} \rightarrow \mathbb{N}$ by $\delta(f)=2^{e}$ where e is the number of irreducible factors appearing in the factorization of f. Consider an element f in R and a nonzero element g in R. Suppose that g does not divide f. There exists a nonzero element r in R such that $\langle f, g\rangle=\langle d\rangle$. In particular, there exists elements s and t in R such that $s f+t g=d$. It follows that d divides g. However, g does not divide d, because this would imply that g divides f. We deduce that there are strictly fewer irreducible elements in the factorization of d than in the factorization of g, so $\delta(r)<\delta(g)$. We conclude that δ is the required DedekindHasse function.

Nevertheless, there is a difference between a principal ideal domain and a Euclidean domain. To exhibit this difference, we document a characteristic of a Euclidean domain.

Lemma 9.2.3. For any Euclidean domain R that is not a field, there exists an element g in R such that the quotient ring $R /\langle g\rangle$ has a system of distinct representative consisting of the 0 and units in R.

Proof. Let $v: R \backslash\{0\} \rightarrow \mathbb{N}$ be a Euclidean function on R. There exists a nonzero nonunits in R because R is not a field. By the

Well-Ordering 0.2.6 of the nonnegative integers, the set
$\{\nu(f) \in \mathbb{N} \mid f$ is a nonzero nonunit in $R\}$
has a minimum, say m. Choose a nonzero nonunit g in the ring R with $\nu(\mathrm{g})=m$. For any element f in R, division with remainder implies that there exists elements q and r in R such that $f=q g+r$ and either $r=0$ or $\nu(r)<\nu(g)$. When $r \neq 0$, the inequality $\nu(r)<\nu(g)$ forces r to be a unit. Since $f+\langle g\rangle=r+\langle g\rangle$, we conclude that the quotient ring $R /\langle g\rangle$ has a system of distinct representatives consisting of the 0 and units in R.
Proposition 9.2.4. The quotient ring $\mathbb{R}[x, y] /\left\langle x^{2}+y^{2}+1\right\rangle$ is a principal ideal domain but not a Euclidean domain.

Sketch of Proof. We address the two assertions separately.

- We prove that the ring $\mathbb{R}[x, y] /\left\langle x^{2}+y^{2}+1\right\rangle$ is not a Euclidean domain. Regarding the ring $\mathbb{R}[x, y]$ as $(\mathbb{R}[x])[y]$, division with remainder establishes that any polynomial in $\mathbb{R}[x, y]$ has a unique expression of the form $q\left(y^{2}+x^{2}+1\right)+(a+b y)$ where q is in $\mathbb{R}[x, y]$ and a and b are in $\mathbb{R}[x]$. Hence, the quotient ring $\mathbb{R}[x, y] /\left\langle x^{2}+y^{2}+1\right\rangle$ has a system of distinct representatives $a+b y$ for some a and b in $\mathbb{R}[x]$. Since $y^{2}=-1-x^{2}$ in the quotient ring $\mathbb{R}[x, y] /\left\langle x^{2}+y^{2}+1\right\rangle$, we can think of this ring as

$$
(\mathbb{R}[x])\left[\sqrt{-1-x^{2}}\right]:=\left\{a+b \sqrt{-1-x^{2}} \mid a, b \in \mathbb{R}[x]\right\} .
$$

We claim that the units in the ring R are precisely the units in the field \mathbb{R}. Consider the norm function $\mathrm{N}: R \rightarrow \mathbb{R}[x]$ defined, for any a and b in $\mathbb{R}[x]$, by

$$
\mathrm{N}(a+b y)=(a+b y)(a-b y)=a^{2}-b^{2} y^{2}=a^{2}+\left(x^{2}+1\right) b^{2} .
$$

For any a, b, c, and d in $\mathbb{R}[x]$, we have

$$
\begin{aligned}
\mathrm{N}((a+b y)(c+d y)) & =\mathrm{N}\left(\left(a c-\left(x^{2}+1\right) b d\right)+(a d+b c) y\right) \\
& =\left(\left(a c-\left(x^{2}+1\right) b d\right)+(a d+b c) y\right)\left(\left(a c-\left(x^{2}+1\right) b d\right)-(a d+b c) y\right) \\
& =((a+b y)(c+d y))((a-b y)(c-d y)) \\
& =((a+b y)(a-b y))((c+d y)(c-d y)) \\
& =\mathrm{N}(a+b y) \mathrm{N}(c+b y) .
\end{aligned}
$$

Since N is a multiplicative function, a unit in R must have a norm that is a unit in $\mathbb{R}[x]$ or equivalently a unit in \mathbb{R}. The only way for $a^{2}+\left(x^{2}+1\right) b^{2}$ to belong to \mathbb{R} is to have $b=0$ and $a \in \mathbb{R}$.

Suppose that R is a Euclidean domain. By Lemma 9.2.3, there would be a nonzero nonunit g in R such that the quotient ring $R /\langle g\rangle$ has a system of distinct representative consisting of the 0 and units in R. Hence, the composition of the canonical ring homomorphisms $\mathbb{R} \rightarrow \mathbb{R}[x] \rightarrow R \rightarrow R /\langle g\rangle$ is surjective. Since every ring homomorphism from a field is injective, this composition is a ring isomorphism. Choosing real numbers r and s such that $x+\langle g\rangle=r+\langle g\rangle$ and $y+\langle g\rangle=s+\langle g\rangle$, it follows that $r^{2}+s^{2}+1=0$ in \mathbb{R} which is a contradiction.

- To prove that R is a principal ideal domain, one exhibits a Dedekind-Hasse function.

