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Although the irreducibility depends on the coefficients, irre‑
ducible polynomials are much like positive prime integers. In
some ways, they are even simpler.

10.0 Factoring polynomials

When are polynomial rings unique factorization domains? To
answer this question, we need an auxiliary invariant.

Definition 10.0.0. Let 𝑅 be a unique factorization domain and
consider a polynomial 𝑓∶= 𝑎𝑚 𝑥𝑚 + 𝑎𝑚−1 𝑥𝑚−1 +⋯+ 𝑎1 𝑥 + 𝑎0 in𝑅[𝑥]. The content of the polynomial 𝑓 is defined to be

cont(𝑓)∶= gcd(𝑎𝑚, 𝑎𝑚−1, … , 𝑎0) .
The polynomial 𝑓 is primitive if cont(𝑓) = 1.

To define the content, we need to
know that greatest common divisors
exist. The greatest common divisor, if
it exists, is unique only up to multipli‑
cation by a unit. Hence, the content of
a polynomial is an equivalence class.

Lemma 10.0.1 (Gauss). Let 𝑅 be a unique factorization domain. For
any two polynomials 𝑓 and 𝑔 in 𝑅[𝑥], we have

cont(𝑓 𝑔) = cont(𝑓) cont(𝑔) .
In particular, when 𝑓 and 𝑔 are primitive, the product 𝑓𝑔 also is.

Proof. We write 𝑓 = cont(𝑓)𝑓 and 𝑔 = cont(𝑔) 𝑔 where 𝑓 and 𝑔
are primitive polynomials in 𝑅[𝑥]. As 𝑓𝑔 = cont(𝑓) cont(𝑔)𝑓 𝑔,
it suffices to verify that the product 𝑓𝑔 is a primitive polynomial.
Let 𝑓 = 𝑎0 + 𝑎1 𝑥 +⋯+ 𝑎𝑚 𝑥𝑚 and 𝑔 = 𝑏0 + 𝑏1 𝑥 +⋯+ 𝑏𝑛 𝑥𝑛 for
some 𝑎0, 𝑎1, … , 𝑎𝑚, 𝑏0, 𝑏1, … , 𝑏𝑛 in 𝑅. Suppose that the coefficients
of 𝑓𝑔 have a common divisor 𝑑 which is not a unit. If the element𝑝 in 𝑅 were an irreducible divisor of 𝑑, then 𝑝 must divide all the
coefficients of 𝑓𝑔. Since 𝑓 and 𝑔 are primitive, 𝑝 does not divide
all the coefficients of 𝑓 or 𝑔. Let 𝑎𝑗 be the first coefficient of 𝑓 not
divisible by 𝑝 and let 𝑏𝑘 be the first coefficient of 𝑔 not divisible by𝑝. Consider the coefficient of 𝑥𝑗+𝑘 in 𝑓𝑔; it has the form𝑎𝑗 𝑏𝑘 + (𝑎𝑗+1 𝑏𝑘−1 + 𝑎𝑗+2 𝑏𝑘−2 +⋯) + (𝑎𝑗−1 𝑏𝑘+1 + 𝑎𝑗−2 𝑏𝑘+2 +⋯) .
By hypothesis, 𝑝 divides this sum. Moreover, all the terms in the
first parenthesis are divisible by 𝑝 (because 𝑝 divides 𝑏𝑖 for all𝑖 < 𝑗) and all terms in the second parenthesis are divisible by𝑝 (because 𝑝 divides 𝑎𝑖 for all 𝑖 < 𝑘). It follows that 𝑝 divides𝑎𝑗 𝑏𝑘. Since ⟨𝑝⟩ is prime ideal, the element 𝑝 divides either 𝑎𝑗 or𝑏𝑘 contrary to our choice of 𝑎𝑗 and 𝑏𝑘. This contradiction shows
that no irreducible element divides all the coefficients of 𝑓𝑔 and,
therefore, the product 𝑓𝑔 is primitive.

Replacing the coefficient domain by its fields of fraction does
not alter irreduciblity.
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Lemma 10.0.2. Let 𝑅 be a unique factorization domain and let 𝐾 be its
field of fractions.⦁ For any nonzero polynomial 𝑓 in the ring 𝐾[𝑥], we have 𝑓 = 𝑐𝑓

where 𝑐 ∈ 𝐾 and 𝑓 is a primitive polynomial in 𝑅[𝑥]. Moreover, this
factorization is unique up to multiplication by in unit of 𝑅.⦁ Let 𝑓 be a polynomial in 𝑅[𝑥] having positive degree. When 𝑓 is
irreducible in 𝑅[𝑥], the polynomial 𝑓 is also irreducible in 𝐾[𝑥].

Proof. Finding a common denominator 𝑑 for the coefficients of
the polynomial 𝑓, we obtain 𝑓 = ( 1𝑑 ) 𝑓 where 𝑓 is a polynomial in𝑅[𝑥]. Setting 𝑐 ∶= 1𝑑 cont(𝑓), it follows that 𝑓 = 𝑐𝑓 where 𝑓 is a
primitive polynomial in 𝑅[𝑥]. Suppose that 𝑓 = (𝑎𝑏 ) 𝑔 for some the
fraction 𝑎𝑏 in 𝐾 and some primitive polynomial 𝑔 in 𝑅[𝑥]. It follows
that 𝑎𝑑 𝑔 = 𝑏 cont(𝑓)𝑓. Taking the content of both sides yields𝑢𝑎𝑑 = 𝑏 cont(𝑓) for some unit 𝑢 in 𝑅. We deduce that 𝑢𝑔 = 𝑓.

Since cont(𝑓) divides 𝑓, the polynomial 𝑓 is primitive in 𝑅[𝑥].
Suppose that 𝑓 is reducible in 𝐾[𝑥]. It follows that 𝑓 = 𝑔1 𝑔2
for some polynomials 𝑔1 and 𝑔2 in 𝐾[𝑥] having positive degree.
The first part implies that, for any index 𝑗, we have 𝑔𝑗 = 𝑐𝑗 ℎ𝑗 for
some 𝑐𝑗 ∈ 𝐾 and some primitive polynomial ℎ𝑗 in 𝑅[𝑥]. Hence,𝑓 = 𝑐1 𝑐2 ℎ1 ℎ2 and the product ℎ1 ℎ2 is primitive by Lemma 10.0.1.
The first part implies 𝑓 and ℎ1 ℎ2 differ up to multiplication by a
unit of 𝑅, which contradicts the irreducibility of 𝑓 in 𝑅[𝑥].
Theorem 10.0.3. For any unique factorization domain 𝑅, the
polynomial ring 𝑅[𝑥] is also a unique factorization domain.

Proof. Let 𝐾 be the field of fractions for the domain 𝑅. Consider
a nonzero polynomial 𝑓 in the ring 𝑅[𝑥]. As 𝐾[𝑥] is a principal
ideal domain, Corollary 9.1.5 shows that it a unique factorization
domain. Hence, we can write 𝑓 = 𝑝1 𝑝2 ⋯ 𝑝𝑟 where each 𝑝𝑗 is an
irreducible polynomial in 𝐾[𝑥]. Lemma 10.0.2 implies that, for all1 ⩽ 𝑖 ⩽ 𝑟, we have 𝑝𝑗 = 𝑐𝑗 𝑞𝑗 for some 𝑐𝑗 ∈ 𝐾 and some primitive
polynomial 𝑞𝑗 in 𝑅[𝑥]. Thus, we deduce that 𝑓 = 𝑐𝑞1 𝑞2 ⋯ 𝑞𝑟
where 𝑐 = ∏𝑗 𝑐𝑗 ∈ 𝐾. Write 𝑐 = 𝑎𝑏 for some elements 𝑎 and 𝑏 in𝑅. Taking contents, we obtain cont(𝑏𝑓) = cont(𝑎 𝑞1 𝑞2 ⋯ 𝑞𝑟) = 𝑎
by Lemma 10.0.1. We deduce that 𝑏 cont(𝑓) = 𝑎, so 𝑏 divides 𝑎
and cont(𝑓) = 𝑐 lies in 𝑅. Since each 𝑞𝑗 is irreducible in 𝐾[𝑥], it
is irreducible in 𝑅[𝑥]. The ring 𝑅 is a unique factorization domain,
so we have 𝑐 = 𝑢𝑑1 𝑑2 ⋯ 𝑑𝑠 where each 𝑑𝑖 is irreducible in 𝑅 and𝑢 in 𝑅 is a unit. It follows that 𝑓 = 𝑢𝑑1 𝑑2 ⋯ 𝑑𝑠 𝑞1 𝑞2 ⋯ 𝑞𝑟 is a
factorization of 𝑓 into a product of irreducible elements in 𝑅[𝑥].

It remains to check uniqueness. Suppose that we have a second
factorization: 𝑓 = 𝑢′ 𝑑′1 𝑑′2 ⋯ 𝑑′𝑡 𝑞′1 𝑞′2 ⋯ 𝑞′𝑘 where each 𝑞′𝑗 is prim‑
itive polynomial in 𝑅[𝑥] and 𝑑′𝑗 is irreducible element in 𝑅. Since
this is also a factorization in 𝐾[𝑥], it is unique, so 𝑟 = 𝑘 and 𝑞′𝑗 = 𝑞𝑗
(up to units and reordering). If primitive polynomials differ by a
unit in 𝐾[𝑥], then they also differ by a unit in 𝑅[𝑥]. Furthermore,
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we have cont(𝑓) = 𝑢′ 𝑑′1 𝑑′2 ⋯ 𝑑′𝑡 = 𝑢𝑑1 𝑑2 ⋯ 𝑑𝑠 so 𝑠 = 𝑡 and𝑑′𝑗 = 𝑑𝑗 (up to units and reordering).

Example 10.0.4. The ring ℤ[𝑥] is a unique factorization domain,
but not a principal ideal domain.

Corollary 10.0.5. For any nonnegative integer 𝑛 and any unique factor‑
ization domain 𝑅, the polynomial ring 𝑅[𝑥1, 𝑥2, … , 𝑥𝑛] is also a unique
factorization domain.

Proof. We proceed by induction on 𝑛. When 𝑛 = 0, the assertion
is trivial. Since Theorem 10.0.3 establishes the induction step, the
claim follows.

Exercises

Problem 10.0.6. Euclid proves that there are infinitely many
prime integers in the following way: if 𝑝1, 𝑝2, … , 𝑝𝑘 are positive
prime integers, then any prime factor of 1 + 𝑝1 𝑝2⋯𝑝𝑘 must be
different from 𝑝𝑗 for any 1 ⩽ 𝑗 ⩽ 𝑘.

(i) Adapt this argument to show that the set of prime integers of
the form 4𝑛 − 1 is infinite.

(ii) Adapt this argument to show that, for any field 𝕂, there are
infinitely many monic irreducible polynomials in 𝕂[𝑥].

Problem 10.0.7. Let 𝑅 be a principal ideal domain and let 𝐾 be its
field of fractions.

(i) Suppose 𝑅 = ℤ. Write 𝑟 = 724 ∈ ℚ in the form 𝑟 = 𝑏3 + 𝑎8 for
some integers 𝑎 and 𝑏.

(ii) Let 𝑔∶= 𝑝𝑞 ∈ 𝑅 where 𝑝 and 𝑞 are coprime. Prove that every
fraction 𝑓/𝑔 ∈ 𝐾 can written in the form𝑓𝑔 = 𝑢𝑞 + 𝑣𝑝
for some elements 𝑢 and 𝑣 in 𝑅.

(iii) Let 𝑔 ∶= 𝑝𝑒11 𝑝𝑒22 ⋯𝑝𝑒𝑚𝑚 ∈ 𝑅 be the factorization of 𝑔 into
irreducible elements 𝑝𝑗, for all 1 ⩽ 𝑗 ⩽ 𝑚, such that the
relation 𝑝𝑗 = 𝑢𝑝𝑘 for some unit 𝑢 ∈ 𝑅 implies that 𝑗 = 𝑘.
Prove that every fraction 𝑓/𝑔 ∈ 𝐾 can be written in the form𝑓𝑔 = 𝑘∑𝑗=1 ℎ𝑗𝑝𝑒𝑗𝑗
for some elements ℎ1, ℎ2, … , ℎ𝑚 in 𝑅.

10.1 Irreducibility Criteria

Can we identify irreducible polynomials? In some situations, this
can be relatively easy.

Problem 10.1.0. Is 𝑓(𝑥) = 𝑥3 + 6𝑥2 + 7 in ℤ[𝑥] irreducible?
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Solution. Yes. Otherwise 𝑓 would have linear factor and its root
would divide 7. However, we have 𝑓(1) = 14, 𝑓(−1) = 12, 𝑓(7) > 0,
and 𝑓(−7) = (−1)(49) + 7 < 0.

Proposition 10.1.1. Let 𝑓 = 𝑎𝑚 𝑥𝑚 +⋯+ 𝑎1 𝑥 + 𝑎0 be a polynomial
in the ring 𝑅[𝑥] and let ⟨𝑝⟩ be a prime ideal in 𝑅 that does not contain𝑎𝑚. When the image of 𝑓 in (𝑅/⟨𝑝⟩)[𝑥] is irreducible, the polynomial 𝑓
is irreducible in 𝑅[𝑥].
Proof. The canonical surjection 𝜋∶ 𝑅 → 𝑅 / ⟨𝑝⟩ induces a ring
homomorphism 𝜑∶𝑅[𝑥] → 𝑅/ ⟨𝑝⟩ [𝑥](𝑅/⟨𝑝⟩)[𝑥]. When 𝑓 = 𝑔ℎ in
the ring 𝑅, we obtain 𝜑(𝑓) = 𝜑(𝑔)𝜑(ℎ). The assumption that the
element 𝑝 does not divide 𝑎𝑚 implies that deg(𝜑(𝑔)) = deg(𝑔) and
deg(𝜑(ℎ)) = deg(ℎ). Therefore, reducibility of the polynomial 𝑓 in𝑅[𝑥] implies the reducibility of the image 𝜑(𝑓) in (𝑅/⟨𝑝⟩)[𝑥].
Problem 10.1.2. Is 𝑥4 + 15𝑥3 + 7 in ℚ[𝑥] irreducible?

Solution. The image of this polynomial in 𝔽5[𝑥] is 𝑥4 + 2. Since𝑥4 ≡0, 1 (mod 5), we see that 𝑥4 +2 has no root in 𝔽5. Suppose that𝑥4 + 2 = (𝑥2 + 𝑎𝑥 + 𝑏)(𝑥2 + 𝑐𝑥 + 𝑑). It follows that 𝑎 + 𝑐 = 0,𝑎𝑐 + 𝑏 + 𝑑 = 0, 𝑎𝑑 + 𝑏𝑐 = 0, and 𝑏𝑑 = 2. Since 𝑐 = −𝑎, we have0 = 𝑎𝑑 + 𝑏𝑐 = 𝑎(𝑑 − 𝑏), so 𝑎 = 0 or 𝑑 = 𝑏.⦁ Suppose that 𝑎 = 0. We have 𝑐 = 0. The equations 𝑏 + 𝑑 = 0
and 𝑏𝑑 = 2 imply that 𝑑 = −𝑏, −𝑏2 = 2, and 𝑏2 = 3. However,02 = 0, 12 = 1, 22 = 4, 32 = 4, and 42 = 1. Hence, there is no
element 𝑏 ∈ 𝔽5 such that 𝑏2 = 3.⦁ Suppose that 𝑏 = 𝑑. We have 𝑏2 = 2. This is again impossible
because the only perfect squares in 𝔽5 are 0, 1, and 4.

We see that the polynomial 𝑥4 + 2 is irreducible in 𝔽5[𝑥]. Thus,
Proposition 10.1.1 shows that 𝑥4 + 15𝑥3 + 7 is irreducible in ℤ[𝑥]
and Lemma 10.0.1 shows that it is irreducible in ℚ[𝑥].
Theorem 10.1.3 (Eisenstein Criterion). Let 𝑅 a commutative domain
and let 𝑓∶= 𝑎0 + 𝑎1 𝑥 +⋯+ 𝑎𝑚 𝑥𝑚 be a primitive polynomial in 𝑅[𝑥]
of positive degree 𝑛. When there exists a prime ideal 𝑃 in 𝑅 such that⦁ 𝑎𝑚 ∉ 𝑃,⦁ 𝑎0, 𝑎1, … , 𝑎𝑚−1 ∈ 𝑃, and⦁ 𝑎0 ∉ 𝑃2,
the polynomial 𝑓 is irreducible in 𝑅[𝑥].

Theodor Schönemann first published
a version of this criterion in 1846.
Gotthold Eisenstein published a
somewhat different version in the
same journal in 1850.

Proof. Suppose that 𝑓 = 𝑔ℎ for some polynomials 𝑔 and ℎ in𝑅[𝑥] having positive degree. Set 𝑔 ∶= 𝑏0 + 𝑏1 𝑥 + ⋯ + 𝑏𝑗 𝑥𝑗 andℎ ∶= 𝑐0 + 𝑐1 𝑥 + ⋯ + 𝑐𝑘 𝑥𝑘 where deg(𝑔) = 𝑗 and deg(ℎ) = 𝑘. It
follows that 𝑎0 = 𝑏0 𝑐0 belongs to the ideal 𝑃. Since 𝑃 is a prime
ideal, we have 𝑏0 ∈ 𝑃 or 𝑐0 ∈ 𝑃. Having both 𝑏0 and 𝑐0 belong to 𝑃
would imply that 𝑎0 ∈ 𝑃2 contradicting our hypotheses. Without
loss of generality, we may assume that 𝑏0 ∈ 𝑃 and 𝑐0 ∉ 𝑃. If
every coefficient of 𝑔 were in 𝑃, then every coefficient of 𝑓 would
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also be in 𝑃 again contradicting our hypothesis. Let 𝑏𝑖 be the first
coefficient of 𝑔 such that 𝑏𝑖 ∉ 𝑃. Since𝑎𝑖 = 𝑏𝑖 𝑐0 + 𝑏𝑖−1 𝑐1 +⋯+ 𝑏0 𝑐𝑖 ,
we obtain the equation 𝑏𝑖 𝑐0 = 𝑎𝑖 − 𝑏𝑖−1 𝑐1 − ⋯ − 𝑏0 𝑐𝑖. Every
element on the right side of this equation lies in 𝑃. However, this
implies that 𝑏𝑖 𝑐0 ∈ 𝑃. Because 𝑃 is a prime ideal, we deduce that
either 𝑏𝑖 ∈ 𝑃 or 𝑐0 ∈ 𝑃 which is a contradiction.

We record the following special case.

Corollary 10.1.4. Let 𝑅 be a unique factorization domain with fraction
field 𝐾 and consider 𝑓∶= 𝑎0+𝑎1 𝑥+⋯+𝑎𝑚 𝑥𝑚 in the ring 𝑅[𝑥]. When
there exists an irreducible element 𝑝 ∈ 𝑅 such that⦁ 𝑝 does not divide 𝑎𝑚,⦁ 𝑝 divides 𝑎𝑖 for all 0 ⩽ 𝑖 ⩽ 𝑚− 1, and⦁ 𝑝2 does not divide 𝑎0,
the polynomial 𝑓 is irreducible in 𝐾[𝑥].
Proof. Theorem 10.1.3 shows that the polynomial 𝑓 is irreducible
in 𝑅[𝑥] and Lemma 10.0.1 shows that 𝑓 is irreducible in 𝐾[𝑥].
Problem 10.1.5. Is 𝑥5 − 6𝑥4 + 3 ∈ ℚ[𝑥] irreducible?

Solution. Yes, apply Corollary 10.1.4 with 𝑝 = 3.

Corollary 10.1.6. For any positive prime integer 𝑝, the polynomial𝑓∶= 𝑥𝑝−1 + 𝑥𝑝−2 +⋯+ 𝑥+ 1
is irreducible in ℚ[𝑥].
Proof. Since (𝑥 − 1)𝑓(𝑥) = 𝑥𝑝 − 1, the ring isomorphism given by𝑥 ↦ 𝑦+ 1 yields𝑦𝑓(𝑦 + 1) = (𝑦 + 1)𝑝 − 1 = 𝑦𝑝 + (𝑝1 ) 𝑦𝑝−1 + (𝑝2 ) 𝑦𝑝−2 +⋯+ ( 𝑝𝑝−1) 𝑦 .
We have (𝑝𝑖 ) = 𝑝(𝑝−1)⋯(𝑝−𝑖+1)𝑖! . When 𝑖 < 𝑝, the prime integer 𝑝 is
not a factor of 𝑖!, so 𝑖! divides the product (𝑝−1)(𝑝−2)⋯(𝑝−𝑖+1)
which implies that (𝑝𝑖 ) is divisible by 𝑝. Dividing the expansion of𝑦𝑓(𝑦 + 1) by 𝑦 shows that 𝑓(𝑦 + 1) satisfies the hypothesis of
Corollary 10.1.4. Therefore, the polynomial𝑦𝑝−1 + (𝑝1 ) 𝑦𝑝−2 + (𝑝2 ) 𝑦𝑝−3 +⋯+ ( 𝑝𝑝−1)
is irreducible. We conclude that 𝑓 is irreducible.

Exercises

Problem 10.1.7. Let 𝑓∶= 𝑎3 𝑥3 + 𝑎2 𝑥2 + 𝑎1 𝑥 + 𝑎0 be a polynomial
in ℤ[𝑥] having degree 3. Assume that 𝑎0, 𝑎1 +𝑎2, and 𝑎3 are all odd.
Prove that 𝑓 is irreducible in ℚ[𝑥].
Problem 10.1.8. Prove that the polynomial𝑔∶= 𝑥5 + 6𝑥4 − 12𝑥3 + 9𝑥2 − 3𝑥 + 𝑘
in ℚ[𝑥] is irreducible for infinitely many integers 𝑘.

Problem 10.1.9. Prove that ℎ ∶= 𝑥5 + 𝑥4 + 𝑥 − 1 is irreducible inℚ[𝑥] using the Eisenstein criterion.
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10.2 Counting Irreducibles

How do we count irreducible elements? The sieve of Eratosthenes is
a method of determining the primes less than a given number 𝑛.
List the integers from 2 to 𝑛. The smallest entry 2 is prime. Cross
out the multiplies of 2 from our list. The smallest remaining entry3 is prime because it is not divisible by any smaller prime. Cross
out the multiplies of 3. Repeat. Using this method, Table 10.1 list

The Greek polymath, Eratosthenes of
Cyrene (276BCE–194BCE), is famous
for his work on prime numbers and
for measuring the diameter of the
earth.

the positive prime integers less than 100.

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 8081 82 83 84 85 86 87 88 89 9091 92 93 94 95 96 97 98 99

Table 10.1: The 25 positive prime
integers less than 100

The asymptotic distribution of the primes among the positive
integers has a famous description.

Definition 10.2.0. The prime‑counting function π∶ℝ→ℕ counts the
number of positive prime integers less than or equal to some real
number; π(𝑥)∶= ||{𝑝 ∈ ℕ | 𝑝 is a positive prime integer and 𝑝 ⩽ 𝑥}||.

The logarithmic integral function li∶ (1,∞)→ℝ is defined by

li(𝑥)∶= ∫𝑥
0

𝑑𝑦
ln(𝑦) .

Prime Number Theorem 10.2.1. We have lim𝑥→∞ π(𝑥)
li(𝑥) = 1. ◼ Assuming the Riemann hypothesis,

one has||π(𝑥) − li(𝑥)|| < √𝑥 ln(𝑥)8𝜋 .
For any positive prime integer 𝑝, sieve methods also allows one

to identify the irreducible polynomials in 𝔽𝑝[𝑥]. List all polyno‑
mials by degree and then cross out products. Table 10.2 lists the
irreducible polynomials of degree at most 4 in 𝔽2[𝑥].0 1 𝑥 𝑥+1𝑥2 𝑥2+1 𝑥2+𝑥 𝑥2+𝑥+1𝑥3 𝑥3+1 𝑥3+𝑥 𝑥3+𝑥+1𝑥3+𝑥2 𝑥3+𝑥2+1 𝑥3+𝑥2+𝑥 𝑥3+𝑥2+𝑥+1𝑥4 𝑥4+1 𝑥4+𝑥 𝑥4+𝑥+1𝑥4+𝑥2 𝑥4+𝑥2+1 𝑥4+𝑥2+𝑥 𝑥4+𝑥2+𝑥+1𝑥4+𝑥3 𝑥4+𝑥3+1 𝑥4+𝑥3+𝑥 𝑥4+𝑥3+𝑥+1𝑥4+𝑥3+𝑥2 𝑥4+𝑥3+𝑥2+1 𝑥4+𝑥3+𝑥2+𝑥 𝑥4+𝑥3+𝑥2+𝑥+1

Table 10.2: Irreducible
polynomials in 𝔽2[𝑥] having small
degree

Problem 10.2.2. Is 𝑥4 − 6𝑥3 + 12𝑥2 − 3𝑥 + 9 in ℤ[𝑥] irreducible?

Solution. This polynomial is irreducible because its image in 𝔽2[𝑥]
is the irreducible polynomial 𝑥4 + 𝑥 + 1.
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Remark 10.2.3. Since 𝑥2 + 𝑥 + 1 is irreducible in 𝔽2[𝑥], Proposi‑
tion 9.0.11 implies that the quotient ring 𝐾 ∶= 𝔽2[𝑥]/⟨𝑥2 + 𝑥 + 1⟩ is
a field. When 𝛼 denotes the image of 𝑥 in 𝐾, the set {1, 𝛼} forms a
basis of 𝐾 over 𝔽2. The field 𝐾 has four elements: {0, 1, 𝛼, 1 + 𝛼}.

An analogue of the prime number theorem counts irreducible
polynomials over a finite field.

Theorem 10.2.4. Let 𝑝 be a positive prime integer. For some positive
integer 𝑒, set 𝑞 ∶= 𝑝𝑒. Setting 𝑁𝑑 to be the number of monic irreducible
polynomials in 𝔽𝑞[𝑥] of degree 𝑑, we have∑𝑑|𝑛 𝑑𝑁𝑑 = 𝑞𝑛 .

One can even prove an analogue of
the Riemann hypothesis, namely that

𝑁𝑑 = 𝑞𝑑𝑑 +𝑂(𝑞𝑑/2𝑑 ) .
Sketch of Proof. Consider the formal power series ∑𝑔 𝑡deg(𝑔) having
integer coefficients where the summation is over all monic polyno‑
mials 𝑔 in the ring 𝔽𝑞[𝑥]. The total number of monic polynomials 𝑔
in 𝔽𝑞[𝑥] of degree 𝑛 is 𝑞𝑛, so we have

∑𝑔 𝑡deg(𝑓) = ∞∑𝑛=0 𝑞𝑛 𝑡𝑛 = 11 − 𝑞 𝑡 .
The polynomial ring 𝔽𝑞[𝑥] is a unique factorization domain. As a
consequence, we obtain

∑𝑔 𝑡deg(𝑔) =∏𝑓 (1 − 𝑡deg(𝑓))−1 = ∞∏𝑑=1(1 − 𝑡𝑑)−𝑁𝑑
where the middle product runs over the monic irreducible polyno‑
mials in 𝑓 in 𝔽𝑞[𝑥]. It follows that11 − 𝑞 𝑡 = ∞∏𝑑=1(1 − 𝑡𝑑)−𝑁𝑑 ,
Taking logarithms gives∞∑𝑛=1 𝑞𝑛 𝑡𝑛𝑛 = − log(1 − 𝑞 𝑡) = − ∞∑𝑑=1𝑁𝑑 log(1 − 𝑡𝑑)

= ∞∑𝑑=1
∞∑𝑐=1 𝑑𝑁𝑑 𝑡𝑑𝑐𝑑𝑐 = ∞∑𝑛=1 𝑡𝑛𝑛 ( ∑𝑑𝑐=𝑛 𝑑𝑁𝑑) .

Theorem 10.2.5. Let 𝑝 be a positive prime integer. For some positive
integer 𝑒, set 𝑞∶= 𝑝𝑒. The irreducible factors of 𝑥𝑞 − 𝑥 are precisely the
monic irreducible polynomials in 𝔽𝑝[𝑥] whose degree divides 𝑑. ◼
Example 10.2.6. In 𝔽2[𝑥], we have𝑥8 − 𝑥 = 𝑥(𝑥 + 1)(𝑥3 + 𝑥 + 1)(𝑥3 + 𝑥2 + 1)𝑥16 − 𝑥 = 𝑥(𝑥 + 1)(𝑥2 + 𝑥 + 1)(𝑥4 + 𝑥 + 1)(𝑥4 + 𝑥3 + 1)(𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1) .
Similarly, in 𝔽3[𝑥], we have𝑥9 − 𝑥 = 𝑥(𝑥 + 1)(𝑥 − 1)(𝑥2 + 1)(𝑥2 + 𝑥 − 1)(𝑥2 − 𝑥 − 1) .


