Problems 02

Due: Friday, 20 January 2023 before 17:00 EST
P2.1. The sequence of square triangular numbers is defined by $N_{0}:=0, N_{1}:=1$, and,

$$
N_{k}:=34 N_{k-1}-N_{k-2}+2 \quad \text { for all } k \geqslant 2
$$

The first few terms are $0,1,36,1225,41616,1413721,48024900,1631432$ 881, \ldots. Verify that $N_{k-1} N_{k+1}=\left(N_{k}-1\right)^{2}$ for all $k \geqslant 1$.

P2.2. Establish the cancellation law for addition: for any three nonnegative integers k, m, and n, show that the equation $m+k=n+k$ implies that $m=n$.

P2.3. Demonstrate that any nonempty subset of the nonnegative integers that is bounded above has a unique greatest element (with respect to \leqslant).

