Problems 04

Due: Friday, 3 February 2023 before 17:00 EST

- **P4.1.** Define a binary relation on the set \mathbb{R} of real numbers: for any two real numbers *x* and *y*, we have $x \sim y$ if there exists an integer *k* such that $x y = 2k\pi$.
 - (i) Verify that this is an equivalence relation.
 - (ii) Describe a system of distinct representatives (also known as a transversal) for this equivalence relation.
 - (iii) Is addition well-defined on the quotient set \mathbb{R}/\sim ?
 - (iv) Is multiplication well-defined on the quotient set \mathbb{R}/\sim ?
- **P4.2.** (i) Let *m* be an integer. Confirm that $m^2 \equiv 0$ or 1 mod 3. (ii) Let *p* be a prime integer such that $p \ge 5$. Prove that $p^2 + 2$ is reducible.
- **P4.3.** (i) Consider the integer $m = \sum_{j=0}^{k} d_j 10^j$ where *k* is a nonnegative integer and, for each *j*, the integer d_j satisfies $0 \le d_j \le 9$. Show that 9 divides *m* if and only if 9 divides $\sum_{j=0}^{k} d_j$.
 - (ii) Using part (i), determine if 9 divides 627 174.