Problems 04

Due: Friday, 3 February 2023 before 17:00 EST
P4.1. Define a binary relation on the set \mathbb{R} of real numbers: for any two real numbers x and y, we have $x \sim y$ if there exists an integer k such that $x-y=2 k \pi$.
(i) Verify that this is an equivalence relation.
(ii) Describe a system of distinct representatives (also known as a transversal) for this equivalence relation.
(iii) Is addition well-defined on the quotient set \mathbb{R} / \sim ?
(iv) Is multiplication well-defined on the quotient set \mathbb{R} / \sim ?

P4.2. (i) Let m be an integer. Confirm that $m^{2} \equiv 0$ or $1 \bmod 3$.
(ii) Let p be a prime integer such that $p \geqslant 5$. Prove that $p^{2}+2$ is reducible.

P4.3. (i) Consider the integer $m=\sum_{j=0}^{k} d_{j} 10^{j}$ where k is a nonnegative integer and, for each j, the integer d_{j} satisfies $0 \leqslant d_{j} \leqslant 9$. Show that 9 divides m if and only if 9 divides $\sum_{j=0}^{k} d_{j}$.
(ii) Using part (i), determine if 9 divides 627174.

