Problems 05

Due: Friday, 10 February 2023 before 17:00 EST
P5.1. Demonstrate that the equation $x^{6}+y^{12}=703$ has no integer solutions.

P5.2. Determine whether the set $\mathbb{R} \cup\{\infty\}$ with addition and multiplication defined, for all x and y in $\mathbb{R} \cup\{\infty\}$, by

$$
x \boxplus y:=\min (x, y) \quad \text { and } \quad x \boxtimes y:=x+y
$$

forms a commutative ring. If it is not, then list all of the defining properties that do hold and all those that fail to hold.

P5.3. Let \mathbb{F}_{4} denote the subset of all (2×2)-matrices having the form

$$
\left[\begin{array}{cc}
a & b \\
b & a+b
\end{array}\right]
$$

where a and b are ring elements in the ring $\mathbb{Z} /\langle 2\rangle$.
(i) Demonstrate that \mathbb{F}_{4} is a subring of the ring formed by all (2×2)-matrices with entries in the ring $\mathbb{Z} /\langle 2\rangle$.
(ii) Verify that \mathbb{F}_{4} is a commutative ring.
(iii) Show that any nonzero element in \mathbb{F}_{4} has a multiplicative inverse.

