Problems 05

Due: Friday, 10 February 2023 before 17:00 EST

P5.1. Demonstrate that the equation $x^6 + y^{12} = 703$ has no integer solutions.

P5.2. Determine whether the set $\mathbb{R} \cup \{\infty\}$ with addition and multiplication defined, for all *x* and *y* in $\mathbb{R} \cup \{\infty\}$, by

 $x \boxplus y := \min(x, y)$ and $x \boxtimes y := x + y$,

forms a commutative ring. If it is not, then list all of the defining properties that do hold and all those that fail to hold.

P5.3. Let \mathbb{F}_4 denote the subset of all (2×2) -matrices having the form

$$\begin{bmatrix} a & b \\ b & a+b \end{bmatrix}$$

where *a* and *b* are ring elements in the ring $\mathbb{Z}/\langle 2 \rangle$.

- (i) Demonstrate that \mathbb{F}_4 is a subring of the ring formed by all (2×2) -matrices with entries in the ring $\mathbb{Z}/\langle 2 \rangle$.
- (ii) Verify that \mathbb{F}_4 is a commutative ring.
- (iii) Show that any nonzero element in \mathbb{F}_4 has a multiplicative inverse.

