Problems 06

Due: Friday, 17 February 2023 before 17:00 EST

P6.1. (i) Let $\mathbb{F}_{3}:=\mathbb{Z} /\langle 3\rangle$ be the field with 3 elements. Consider the commutative ring

$$
\mathbb{F}_{3}[\mathrm{i}]:=\left\{a+b \mathrm{i} \mid a, b \in \mathbb{F}_{3} \text { and } \mathrm{i}^{2} \equiv-1 \equiv 2 \bmod 3\right\}
$$

Verify that $\mathbb{F}_{3}[\mathrm{i}]$ is a field.
(ii) Let $\mathbb{F}_{5}:=\mathbb{Z} /\langle 5\rangle$ be the field with 5 elements. Consider the commutative ring

$$
\mathbb{F}_{5}[\mathrm{i}]:=\left\{a+b \mathrm{i} \mid a, b \in \mathbb{F}_{5} \text { and } \mathrm{i}^{2} \equiv-1 \equiv 4 \bmod 5\right\} .
$$

Confirm that $\mathbb{F}_{5}[\mathrm{i}]$ is not a domain.

P6.2. (i) Let $R:=\mathbb{Z} /\langle 6\rangle$. For the polynomials
$g=x^{5}+3 x^{3}+5 x^{2}+2 x+1 \quad$ and $\quad f=2 x^{2}+4 x+1$ in $R[x]$, find a quotient and remainder for division of g by f.
(ii) Let K be a field. Consider two polynomials f and g in the ring $K[x]$ such that $\operatorname{deg}(g)>0$. Confirm that there exist unique polynomials $h_{0}, h_{1}, \ldots, h_{d}$ in the ring $K[x]$ such that $f=h_{0}+h_{1} g+h_{2} g^{2}+h_{3} g^{3}+\cdots+h_{d} g^{d}$ and $\operatorname{deg}\left(h_{j}\right)<\operatorname{deg}(g)$ or $h_{j}=0$ for all $0 \leqslant j \leqslant d$.

P6.3. Let R be a commutative ring. The derivative operator $D: R[x] \rightarrow R[x]$ is defined, for any polynomial $f=a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0}$ in $R[x]$, by

$$
D(f)=\left(m a_{m}\right) x^{m-1}+\left((m-1) a_{m-1}\right) x^{m-2}+\cdots+a_{1} .
$$

(i) Prove that the operator D is an R-linear map: for any two ring elements r and s in the coefficient ring R and any two polynomials f and g in the ring $R[x]$, we have $D(r f+s g)=r D(f)+s D(g)$.
(ii) Prove that the operator D satisfies the Leibniz product rule: for any two polynomials f and g in the ring $R[x]$, we have $D(f g)=D(f) g+f D(g)$.
(iii) Let f be a polynomial in $R[x]$ and let $b \in R$ be root of f having multiplicity k with $k \geqslant 1$. Prove that b is also a root of the derivative $D(f)$ having multiplicity at least $k-1$. Moreover, when the product $k 1_{R}$ is invertible in R, prove that b is a root of the derivative $D(f)$ having multiplicity $k-1$.

