Problems 07

Due: Friday, 3 March 2023 before 17:00 EST
P7.1. Let m and n be positive integers. When m divides n, confirm that there exists a ring homomorphism from $\mathbb{Z} /\langle n\rangle$ to $\mathbb{Z} /\langle m\rangle$.

P7.2. Let $U_{3}(\mathbb{Z})$ be the subset of all upper triangular (3×3)-matrices with integer entries;

$$
\mathrm{U}_{3}(\mathbb{Z}):=\left\{\left.\left[\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & a_{4} & a_{5} \\
0 & 0 & a_{6}
\end{array}\right] \right\rvert\, a_{1}, a_{2}, \ldots, a_{6} \in \mathbb{Z}\right\}
$$

(i) Verify that $U_{3}(\mathbb{Z})$ is a subring of the ring of all (3×3)-matrices with integer entries.
(ii) Given the matrix

$$
\mathbf{N}:=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

let $\eta: \mathbb{Z}[x] \rightarrow \mathrm{U}_{3}(\mathbb{Z})$ be the ring homomorphism defined by $\eta\left(a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0}\right)=a_{m} \mathbf{N}^{m}+a_{m-1} \mathbf{N}^{m-1}+\cdots+a_{1} \mathbf{N}+a_{0} \mathbf{I}$.

Find a polynomial g in $\mathbb{Z}[x]$ such that $\operatorname{Ker}(\eta)=\langle g\rangle$.

P7.3. Consider the ideal $I:=\langle 1+2 \mathrm{i}\rangle$ in the ring $\mathbb{Z}[\mathrm{i}]:=\{a+b \mathrm{i} \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$ of Gaussian integers. Let $R:=\mathbb{Z}[\mathrm{i}] / I$ be the quotient ring.
(i) Are the cosets i $+I$ and $2+I$ equal in R ?
(ii) Are the cosets $4+I$ and $-1+I$ equal in R ?
(iii) How many elements does R have?
(iv) Is R a field?

