Problems 08 Due: Friday, 10 March 2023 before 17:00 EST

- **P8.1.** Let θ : $Q \to R$, φ : $R \to S$, and ψ : $S \to T$ be ring homomorphisms. When the compositions $\varphi \theta$ and $\psi \varphi$ are ring isomorphisms, prove that θ , φ , ψ , and $\psi \varphi \theta$ are also ring isomorphisms.
- **P8.2.** Each quotient ring R/I in the left column of Table 1 is isomorphic to a ring *S* in the right column. Match each quotient ring with its isomorphic partner and prove that they are isomorphic be describing a surjective ring homomorphism $\varphi: R \to S$ with kernel *I*. The matching is neither injective nor surjective.

R/I	S
$\mathbb{Z}[x]$	\mathbb{Z}
$\langle 8, 12, x \rangle$	$\overline{\langle 3 \rangle}$
$\mathbb{Q}[x]$	$\frac{\mathbb{Z}}{\langle 4 \rangle}$
$\overline{\langle x^2-2 angle}$	
$\mathbb{R}[x]$	$\frac{\mathbb{Z}}{\langle 8 \rangle}$
$\langle x - \sqrt{2} \rangle$	$\langle 8 \rangle$
$\mathbb{R}[x]$	\mathbb{Z}
$\overline{\langle x^2 + x + 2 \rangle}$	
$\frac{\mathbb{R}[x]}{(x)}$	Q
$\langle x^2 \rangle$	
$\frac{\mathbb{R}[x,y]}{\langle x,y \rangle}$	R
$\overline{\langle y-1\rangle}$	
$\frac{\mathbb{R}[x,y]}{\langle y-1,x+9\rangle}$	C
. ,	
$\frac{\mathbb{R}[x,y]}{\langle y-1,x^2+9\rangle}$	$\{a+b\sqrt{2} \mid a,b \in \mathbb{Q}\}$
	$\mathbb{Z}[x]$
	$\mathbb{Q}[x]$
	$\mathbb{R}[x]$
	$\mathbb{C}[x]$
	$\left\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \middle a, b \in \mathbb{R} \right\}$

Table 1. Table of quotient rings and rings

