Problems 09

Due: Friday, 17 March 2023 before 17:00 EST

- **P9.1.** (i) Prove that $\mathbb{Z}/\langle 60 \rangle$ is isomorphic to $\mathbb{Z}/\langle 3 \rangle \times \mathbb{Z}/\langle 4 \rangle \times \mathbb{Z}/\langle 5 \rangle$.
 - (ii) Exhibit elements e_1 , e_2 , and e_3 in $\mathbb{Z}/\langle 60 \rangle$ such that

 $e_1^2 = e_1$ $e_2^2 = e_2$ $e_3^2 = e_3$ $e_2 e_3 = 0$ $e_1 e_3 = 0$ $e_1 e_2 = 0$ and $[1]_{60} = e_1 + e_2 + e_3$.

- **P9.2.** Consider two multiplicative subsets *D* and *E* a commutative ring *R* satisfying *D* ⊆ *E*. Let φ: R[D⁻¹] → R[E⁻¹] be the ring homomorphism defined, for any fraction *r/d* in R[D⁻¹], by φ(*r/d*) = *r/d*. Prove that the following statements are equivalent:
 (a) The map φ is a ring isomorphism.
 - (b) For any element *e* in *E*, the fraction e/1 is a unit in $R[D^{-1}]$.
 - (c) For any element *e* in *E*, there exists an element *s* in *R* such that $e s \in D$.

P9.3. Prove that $\mathbb{Z}/\langle 512 \rangle$ has exactly one maximal ideal.

