Problems 09

Due: Friday, 17 March 2023 before 17:00 EST
P9.1. (i) Prove that $\mathbb{Z} /\langle 60\rangle$ is isomorphic to $\mathbb{Z} /\langle 3\rangle \times \mathbb{Z} /\langle 4\rangle \times \mathbb{Z} /\langle 5\rangle$.
(ii) Exhibit elements e_{1}, e_{2}, and e_{3} in $\mathbb{Z} /\langle 60\rangle$ such that

$$
\begin{aligned}
& e_{1}^{2}=e_{1} \quad e_{2}^{2}=e_{2} e_{3}^{2}=e_{3} \\
& \text { and }[1]_{60}=e_{1}+e_{2}+e_{3} .
\end{aligned}
$$

P9.2. Consider two multiplicative subsets D and E a commutative ring R satisfying $D \subseteq E$. Let $\varphi: R\left[D^{-1}\right] \rightarrow R\left[E^{-1}\right]$ be the ring homomorphism defined, for any fraction r / d in $R\left[D^{-1}\right]$, by $\varphi(r / d)=r / d$. Prove that the following statements are equivalent:
(a) The map φ is a ring isomorphism.
(b) For any element e in E, the fraction $e / 1$ is a unit in $R\left[D^{-1}\right]$.
(c) For any element e in E, there exists an element s in R such that es $\in D$.

P9.3. Prove that $\mathbb{Z} /\langle 512\rangle$ has exactly one maximal ideal.

