Problems 10 Due: Friday, 24 March 2023 before 17:00 EST

P10.1. Consider the subrings $\mathbb{Z}[\sqrt{5}] := \{a + b\sqrt{5} \mid a, b \in \mathbb{Z}\}$ and $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right] := \{a + b\left(\frac{1+\sqrt{5}}{2}\right) \mid a, b \in \mathbb{Z}\}$

of the field \mathbb{R} of real numbers. For each subring, describe the elements in the field of fractions. Are these two fields the same? Is one contained in the other?

P10.2. Let $\omega := \frac{1}{2}(-1 + \sqrt{3}i) \in \mathbb{C}$ be one of the complex roots of the polynomial $x^2 + x + 1$ in $\mathbb{C}[x]$. Prove that the commutative domain $\mathbb{Z}[\omega] := \{a + b\omega \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$ is a Euclidean domain with the function $\nu : \mathbb{Z}[\omega] \to \mathbb{N}$ defined by $\nu(a + b\omega) = a^2 - ab + b^2$.

P10.3. Let $\mathbb{F}_2 := \mathbb{Z}/\langle 2 \rangle$ be the field with two elements. Find a polynomial f in $\mathbb{F}_2[x]$ such that

$$\begin{aligned} f + \langle x \rangle &= 1 + \langle x \rangle & \text{in } \mathbb{F}_2[x] / \langle x \rangle, \\ f + \langle x^2 + x + 1 \rangle &= (x + 1) + \langle x^2 + x + 1 \rangle & \text{in } \mathbb{F}_2[x] / \langle x^2 + x + 1 \rangle, \\ f + \langle x^4 + x^3 + 1 \rangle &= (x^3 + x + 1) + \langle x^4 + x^3 + 1 \rangle & \text{in } \mathbb{F}_2[x] / \langle x^4 + x^3 + 1 \rangle. \end{aligned}$$

