Problems 10

Due: Friday, 24 March 2023 before 17:00 EST
P10.1. Consider the subrings $\mathbb{Z}[\sqrt{5}]:=\{a+b \sqrt{5} \mid a, b \in \mathbb{Z}\}$ and

$$
\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]:=\left\{\left.a+b\left(\frac{1+\sqrt{5}}{2}\right) \right\rvert\, a, b \in \mathbb{Z}\right\}
$$

of the field \mathbb{R} of real numbers. For each subring, describe the elements in the field of fractions. Are these two fields the same? Is one contained in the other?

P10.2. Let $\omega:=\frac{1}{2}(-1+\sqrt{3} i) \in \mathbb{C}$ be one of the complex roots of the polynomial $x^{2}+x+1$ in $\mathbb{C}[x]$. Prove that the commutative domain $\mathbb{Z}[\omega]:=\{a+b \omega \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$ is a Euclidean domain with the function $\nu: \mathbb{Z}[\omega] \rightarrow \mathbb{N}$ defined by $\nu(a+b \omega)=a^{2}-a b+b^{2}$.

P10.3. Let $\mathbb{F}_{2}:=\mathbb{Z} /\langle 2\rangle$ be the field with two elements. Find a polynomial f in $\mathbb{F}_{2}[x]$ such that

$$
\begin{aligned}
f+\langle x\rangle & =1+\langle x\rangle & & \text { in } \mathbb{F}_{2}[x] /\langle x\rangle \\
f+\left\langle x^{2}+x+1\right\rangle & =(x+1)+\left\langle x^{2}+x+1\right\rangle & & \text { in } \mathbb{F}_{2}[x] /\left\langle x^{2}+x+1\right\rangle \\
f+\left\langle x^{4}+x^{3}+1\right\rangle & =\left(x^{3}+x+1\right)+\left\langle x^{4}+x^{3}+1\right\rangle & & \text { in } \mathbb{F}_{2}[x] /\left\langle x^{4}+x^{3}+1\right\rangle .
\end{aligned}
$$

