Problems 11

Due: Friday, 31 March 2023 before 17:00 EST
P11.1. Consider the subring $\mathbb{Z}[\sqrt{-5}]:=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\}$ of field \mathbb{C} of complex numbers
(i) Show that the norm function $\mathrm{N}: \mathbb{Z}[\sqrt{-5}] \rightarrow \mathbb{Z}$ defined by $\mathrm{N}(a+b \sqrt{-5})=a^{2}+5 b^{2}$ is compatible with multiplication, meaning that the norm of a product is equal to the product of the norms of the factors.
(ii) Confirm that $2+\sqrt{-5}$ is an irreducible element in $\mathbb{Z}[\sqrt{-5}]$.
(iii) Verify that the ideal $\langle 2+\sqrt{-5}\rangle$ is not prime in $\mathbb{Z}[\sqrt{-5}]$.

P11.2. Let R be a principal ideal domain. For any two distinct nonzero elements f and g with no common irreducible factor, prove that $\langle f\rangle+\langle g\rangle=\langle 1\rangle$.

P11.3. Let R be a unique factorization domain such that the sum of two principal ideals in R is again a principal ideal. Prove that R is a principal ideal domain.
Hint. First establish that every finitely-generated ideal is principal, and then show that every ideal is finitely generated.

