Problems 11

Due: Friday, 31 March 2023 before 17:00 EST

- **P11.1.** Consider the subring $\mathbb{Z}[\sqrt{-5}] := \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$ of field \mathbb{C} of complex numbers
 - (i) Show that the norm function N: $\mathbb{Z}[\sqrt{-5}] \rightarrow \mathbb{Z}$ defined by N($a + b\sqrt{-5}$) = $a^2 + 5b^2$ is compatible with multiplication, meaning that the norm of a product is equal to the product of the norms of the factors.
 - (ii) Confirm that $2 + \sqrt{-5}$ is an irreducible element in $\mathbb{Z}[\sqrt{-5}]$.
 - (iii) Verify that the ideal $\langle 2 + \sqrt{-5} \rangle$ is not prime in $\mathbb{Z}[\sqrt{-5}]$.
- **P11.2.** Let *R* be a principal ideal domain. For any two distinct nonzero elements *f* and *g* with no common irreducible factor, prove that $\langle f \rangle + \langle g \rangle = \langle 1 \rangle$.
- **P11.3.** Let R be a unique factorization domain such that the sum of two principal ideals in R is again a principal ideal. Prove that R is a principal ideal domain.

Hint. First establish that every finitely-generated ideal is principal, and then show that every ideal is finitely generated.

