Problems 12

Due: Monday, 10 April 2023 before 17:00 EDT

- **P12.1.** Euclid proves that there are infinitely many prime integers in the following way: if p_1, p_2, \dots, p_k are positive prime integers, then any prime factor of $1 + p_1 p_2 \cdots p_k$ must be different from p_i for any $1 \le j \le k$.
 - (i) Adapt this argument to show that the set of prime integers of the form 4n 1 is infinite.
 - (ii) Adapt this argument to show that, for any field \mathbb{K} , there are infinitely many monic irreducible polynomials in $\mathbb{K}[x]$.
- **P12.2.** (i) Let $f := a_3 x^3 + a_2 x^2 + a_1 x + a_0$ be a polynomial in $\mathbb{Z}[x]$ having degree 3. Assume that a_0 , $a_1 + a_2$, and a_3 are all odd. Prove that f is irreducible in $\mathbb{Q}[x]$.
 - (ii) Prove that the polynomial $g := x^5 + 6x^4 12x^3 + 9x^2 3x + k$ in $\mathbb{Q}[x]$ is irreducible for infinitely many integers k.
 - (iii) Prove that $h := x^5 + x^4 + x 1$ is irreducible in $\mathbb{Q}[x]$ using the Eisenstein criterion.
- **P12.3.** *Existence of Partial Fraction Decompositions.* Let *R* be a principal ideal domain and let *K* be its field of fractions.

 - (i) Suppose $R = \mathbb{Z}$. Write $r = \frac{7}{24} \in \mathbb{Q}$ in the form $r = \frac{b}{3} + \frac{a}{8}$ for some integers *a* and *b*. (ii) Let $g := pq \in R$ where *p* and *q* are coprime. Prove that every fraction $f/g \in K$ can written in the form

$$\frac{f}{g} = \frac{u}{q} + \frac{v}{p}$$

for some elements *u* and *v* in *R*.

(iii) Let $g := p_1^{e_1} p_2^{e_2} \cdots p_m^{e_m} \in R$ be the factorization of g into irreducible elements p_i , for all $1 \leq j \leq m$, such that the relation $p_i = u p_k$ for some unit $u \in R$ implies that j = k. Prove that every fraction $f/g \in K$ can be written in the form

$$\frac{f}{g} = \sum_{j=1}^{k} \frac{h_j}{p_j^{e_j}}$$

for some elements $h_1, h_2, ..., h_m$ in *R*.