Problems 12

Due: Monday, 10 April 2023 before 17:00 EDT
P12.1. Euclid proves that there are infinitely many prime integers in the following way: if $p_{1}, p_{2}, \ldots, p_{k}$ are positive prime integers, then any prime factor of $1+p_{1} p_{2} \cdots p_{k}$ must be different from p_{j} for any $1 \leqslant j \leqslant k$.
(i) Adapt this argument to show that the set of prime integers of the form $4 n-1$ is infinite.
(ii) Adapt this argument to show that, for any field \mathbb{K}, there are infinitely many monic irreducible polynomials in $\mathbb{K}[x]$.

P12.2. (i) Let $f:=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ be a polynomial in $\mathbb{Z}[x]$ having degree 3 . Assume that $a_{0}, a_{1}+a_{2}$, and a_{3} are all odd. Prove that f is irreducible in $\mathbb{Q}[x]$.
(ii) Prove that the polynomial $g:=x^{5}+6 x^{4}-12 x^{3}+9 x^{2}-3 x+k$ in $\mathbb{Q}[x]$ is irreducible for infinitely many integers k.
(iii) Prove that $h:=x^{5}+x^{4}+x-1$ is irreducible in $\mathbb{Q}[x]$ using the Eisenstein criterion.

P12.3. Existence of Partial Fraction Decompositions. Let R be a principal ideal domain and let K be its field of fractions.
(i) Suppose $R=\mathbb{Z}$. Write $r=\frac{7}{24} \in \mathbb{Q}$ in the form $r=\frac{b}{3}+\frac{a}{8}$ for some integers a and b.
(ii) Let $g:=p q \in R$ where p and q are coprime. Prove that every fraction $f / g \in K$ can written in the form

$$
\frac{f}{g}=\frac{u}{q}+\frac{v}{p}
$$

for some elements u and v in R.
(iii) Let $g:=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{m}^{e_{m}} \in R$ be the factorization of g into irreducible elements p_{j}, for all $1 \leqslant j \leqslant m$, such that the relation $p_{j}=u p_{k}$ for some unit $u \in R$ implies that $j=k$. Prove that every fraction $f / g \in K$ can be written in the form

$$
\frac{f}{g}=\sum_{j=1}^{k} \frac{h_{j}}{p_{j}^{e_{j}}}
$$

for some elements $h_{1}, h_{2}, \ldots, h_{m}$ in R.

