
Solutions 07
P7.1. Both of the subsets

𝑅∶= ℚ[√2] = {𝑎 + 𝑏√2 ∈ ℝ || 𝑎, 𝑏 ∈ ℚ} , and 𝑆∶= ℚ[√3] = {𝑎 + 𝑏√3 ∈ ℝ || 𝑎, 𝑏 ∈ ℚ} .
are subrings of ℝ. Prove that there does not exist a ring homomorphism 𝜑∶𝑅 → 𝑆.

Solution. Suppose that the map 𝜑∶ 𝑅 → 𝑆 is a ring homomorphism. Hence, there
exists rational numbers 𝑎 and 𝑏 such that 𝜑(√2) = 𝑎 + 𝑏√3. It follows that

2 = 1 + 1 = 𝜑(1 + 1) = 𝜑(2) = 𝜑(√2√2)
= 𝜑(√2)𝜑(√2) = (𝑎 + 𝑏√3)2 = (𝑎2 + 3𝑏2) + 2𝑎𝑏√3 .

Since √3 is an irrational number, we deduce that 𝑎𝑏 = 0. If 𝑎 ≠ 0 and 𝑏 = 0, then we
would have 2 = 𝑎2 and 𝑎 = ±√2. However, the number √2 is irrational contradicting
the definition of 𝑎. Similarly, if 𝑎 = 0 and 𝑏 ≠ 0, then we would have 2 = 3𝑏2 and
𝑏 = ±√2/3. However, the number √2/3 is irrational contradicting the definition of 𝑏.
Thus, we see that 𝑎 = 𝑏 = 0 and 𝜑(√2) = 0.

Now, the properties of a ring homomorphism give

0 = 𝜑(0) = 𝜑(1 − 1) = 𝜑(1 + (−1))= 𝜑(1) + 𝜑(−1) = 1 + 𝜑(−1) ,
so 𝜑(−1) = −1. We thereby obtain

1 = 𝜑(1) = 𝜑(−1 +√2 −√2 + 2)
= 𝜑((1 + √2)(−1 +√2))
= 𝜑(1 + √2)𝜑(−1 +√2)
= (𝜑(1) + 𝜑(√2))(𝜑(−1) + 𝜑(√2)) = (1)(−1) = −1 ,

which is a contradiction. Thus, no map 𝜑∶𝑅 → 𝑆 is a ring homomorphism. □

P7.2. Let U4(ℤ) be the subset of all upper triangular (4 × 4)‑matrices with integer entries;

U4(ℤ)∶=
⎧
⎨
⎩

⎡
⎢
⎢
⎣

𝑎0 𝑎1 𝑎3 𝑎6
0 𝑎2 𝑎4 𝑎7
0 0 𝑎5 𝑎8
0 0 0 𝑎9

⎤
⎥
⎥
⎦

|||||
𝑎0, 𝑎1, … , 𝑎9 ∈ ℤ

⎫
⎬
⎭
.

i. Verify that U4(ℤ) is a subring of the ring of all (4×4)‑matrices with integer entries.
ii. Given the matrix

N∶=
⎡
⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥
⎥
⎦
,

let 𝜂∶ℤ[𝑥] → U4(ℤ) be the ring homomorphism defined by

𝜂(𝑎𝑚 𝑥𝑚 + 𝑎𝑚−1 𝑥𝑚−1 +⋯+ 𝑎1 𝑥 + 𝑎0) = 𝑎𝑚 N𝑚 + 𝑎𝑚−1 N𝑚−1 +⋯+ 𝑎1 N + 𝑎0 I .
Find a polynomial 𝑔 in ℤ[𝑥] such that Ker(𝜂) = ⟨𝑔⟩.
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Solution.
i. For any matrices

A∶=
⎡
⎢
⎢
⎣

𝑎0 𝑎1 𝑎3 𝑎6
0 𝑎2 𝑎4 𝑎7
0 0 𝑎5 𝑎8
0 0 0 𝑎9

⎤
⎥
⎥
⎦

and B∶=
⎡
⎢
⎢
⎣

𝑏0 𝑏1 𝑏3 𝑏6
0 𝑏2 𝑏4 𝑏7
0 0 𝑏5 𝑏8
0 0 0 𝑏9

⎤
⎥
⎥
⎦

in U4(ℤ), we have

A − B =
⎡
⎢
⎢
⎣

𝑎0 𝑎1 𝑎3 𝑎6
0 𝑎2 𝑎4 𝑎7
0 0 𝑎5 𝑎8
0 0 0 𝑎9

⎤
⎥
⎥
⎦
−
⎡
⎢
⎢
⎣

𝑏0 𝑏1 𝑏3 𝑏6
0 𝑏2 𝑏4 𝑏7
0 0 𝑏5 𝑏8
0 0 0 𝑏9

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

𝑎0 − 𝑏0 𝑎1 − 𝑏1 𝑎3 − 𝑏3 𝑎6 − 𝑏6
0 𝑎2 − 𝑏2 𝑎4 − 𝑏4 𝑎7 − 𝑏7
0 0 𝑎5 − 𝑏5 𝑎8 − 𝑏8
0 0 0 𝑎9 − 𝑏9

⎤
⎥
⎥
⎦
∈ U4(ℤ)

A B =
⎡
⎢
⎢
⎣

𝑎0 𝑎1 𝑎3 𝑎6
0 𝑎2 𝑎4 𝑎7
0 0 𝑎5 𝑎8
0 0 0 𝑎9

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑏0 𝑏1 𝑏3 𝑏6
0 𝑏2 𝑏4 𝑏7
0 0 𝑏5 𝑏8
0 0 0 𝑏9

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑎0𝑏0 𝑎0𝑏1 + 𝑎1𝑏2 𝑎0𝑏3 + 𝑎1𝑏4 + 𝑎3𝑏5 𝑎0𝑏6 + 𝑎1𝑏7 + 𝑎3𝑏8 + 𝑎6𝑏9
0 𝑎2𝑏2 𝑎2𝑏4 + 𝑎4𝑏5 𝑎2𝑏7 + 𝑎4𝑏8 + 𝑎7𝑏9
0 0 𝑎5𝑏5 𝑎5𝑏8 + 𝑎8𝑏9
0 0 0 𝑎9𝑏9

⎤
⎥
⎥
⎦
∈ U4(ℤ)

I =
⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎦
∈ U4(ℤ)

so U4(ℤ) is a subring.

ii. First observe that

N2 =
⎡
⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎦

N3 =
⎡
⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎦

N4 =
⎡
⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎦
.

Hence, any polynomial 𝑓∶= 𝑎𝑚 𝑥𝑚 +⋯+ 𝑎1 𝑥 + 𝑎0 in ℤ[𝑥], we have

𝜂(𝑓) = 𝑎3 N3 + 𝑎2 N2 + 𝑎1 N + 𝑎0 I

=
⎡
⎢
⎢
⎣

0 0 0 𝑎3
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎦
+
⎡
⎢
⎢
⎣

0 0 𝑎2 0
0 0 0 𝑎2
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎦
+
⎡
⎢
⎢
⎣

0 𝑎1 0 0
0 0 𝑎1 0
0 0 0 𝑎1
0 0 0 0

⎤
⎥
⎥
⎦
+
⎡
⎢
⎢
⎣

𝑎0 0 0 0
0 𝑎0 0 0
0 0 𝑎0 0
0 0 0 𝑎0

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

𝑎0 𝑎1 𝑎2 𝑎3
0 𝑎0 𝑎1 𝑎2
0 0 𝑎0 𝑎1
0 0 0 𝑎0

⎤
⎥
⎥
⎦
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It follows that 𝑓 belongs to Ker(𝜂) if and only if 𝑎0 = 𝑎1 = 𝑎2 = 𝑎3 = 0 or

𝑓 = 𝑎𝑚 𝑥𝑚 + 𝑎𝑚−1 𝑥𝑚−1 +⋯+ 𝑎4 𝑥4 = (𝑎𝑚 𝑥𝑚−4 + 𝑎𝑚−1 𝑥𝑚−5 +⋯+ 𝑎4) 𝑥4 .
In other words, the polynomial 𝑓 belong to Ker(𝜂) if and only if 𝑥4 divides 𝑓. We
conclude that Ker(𝜂) = ⟨𝑥4⟩. □

P7.3. Consider the ideal 𝐼 ∶= ⟨1 + 2 i⟩ in the ring ℤ[i] ∶= {𝑎 + 𝑏 i ∈ ℂ || 𝑎, 𝑏 ∈ ℤ} of Gaussian
integers. Let 𝑅∶= ℤ[i]/𝐼 be the quotient ring.

i. Are the cosets i + 𝐼 and 2 + 𝐼 equal in 𝑅?
ii. How many elements does 𝑅 have?

iii. What is the characteristic of 𝑅?
iv. Is 𝑅 a field?

Solution.
i. Since −2 + i = i (1 + 2 i), the difference −2 + i belongs to the ideal 𝐼. Hence, the

cosets i + 𝐼 and 2 + 𝐼 equal in the quotient ring 𝑅.

ii. The black dots in Figure 1 correspond to the elements in the ideal 𝐼 and the grey
dots in Figure 1 correspond to the elements in ℤ[i]. From Figure 1, we see that one
may obtain any Gaussian integer by adding an appropriate element of 𝐼 to 0, 1, 2,
1+ i, or 2+ i. Furthermore, the difference between any two of these five Gaussian
integers does not belong to 𝐼. Therefore, the quotient ring 𝑅 has five elements:
0 + 𝐼, 1 + 𝐼, 2 + 𝐼, (1 + i) + 𝐼, and (2 + i) + 𝐼.

Figure 1. Multiples of the Gaussian integer 1 + 2 i

iii. As 5 − (0) = 5 = (1 − 2 i) (1 + 2 i), the difference 5 belongs to the ideal 𝐼. Hence,
the cosets 5(1+𝐼) = 5+𝐼 and 0+𝐼 are equal in the quotient ring 𝑅. Similarly, we
have 3 − (1 + i) = 2 − i = −i (1 + 2 i) and 4 − (2 + i) = 2 − i = −i (1 + 2 i), so we
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have 3(1+ 𝐼) = 3+𝐼 = (1+ i)+ 𝐼 and 4(1+ 𝐼) = 4+𝐼 = (2+ i)+ 𝐼 in 𝑅. Thus, the
ring 𝑅 has characteristic 5.

iv. Since
(1 + 𝐼)(1 + 𝐼) = 1 + 𝐼

(2 + 𝐼)((1 + i) + 𝐼) = (2 + 2 i) + 𝐼 = (1 + (1 + 2 i)) + 𝐼 = 1 + 𝐼
((2 + i) + 𝐼)((2 + i) + 𝐼) = (3 + 4 i) + 𝐼 = (1 + 2(1 + 2 i)) + 𝐼 = 1 + 𝐼 ,

part ii implies that every nonzero element in 𝑅 is a unit, so 𝑅 is a field. □
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