Solutions 08

Each quotient ring R/I in the top row of Table 1 is isomorphic to a ring S in the bottom row.

Table 1. Table of quotient rings and rings

$\frac{R}{I}$	$\left \frac{\mathbb{Z}[x]}{\langle 18,81,}\right $	$x\rangle$	$\overline{\langle x^2 \cdot }$	$\mathbb{Z}[x]$ + 4:	$\frac{x}{x}$ +	$\overline{5}$ $\frac{\mathbb{R}}{\langle x^2 \rangle}$	$\frac{[x]}{(-2)}$	$\frac{\mathbb{R}[x]}{\langle x^2 + $	$\frac{]}{2} \frac{\mathbb{C}[x]}{\langle x^2}$	$\frac{z}{z}$ $\frac{\mathbb{Q}}{\langle x^2 \rangle}$	$\frac{[x]}{-2}$	
S	$\mathbb{Z} \frac{\mathbb{Z}}{\langle 3 \rangle}$	$\frac{\mathbb{Z}}{\langle 9 \rangle}$	Q	R	C	$\mathbb{R} \times \mathbb{R}$	ℤ[i]	$\mathbb{Q}[x]$	$\mathbb{Q}[\sqrt{2}]$	$\mathbb{R}[x]$	$\left\{ \begin{bmatrix} z \\ 0 \end{bmatrix} \right.$	$\begin{bmatrix} w\\ z \end{bmatrix} \mid z, w \in \mathbb{C} \Big\}$

P8.1. Match each of the quotient rings $\frac{\mathbb{Z}[x]}{\langle 18, 81, x \rangle}$ and $\frac{\mathbb{Z}[x]}{\langle x^2 + 4x + 5 \rangle}$ with a ring *S* by exhibit-

Solution. We claim that

$$\frac{\mathbb{Z}[x]}{\langle 18, 81, x \rangle} \cong \frac{\mathbb{Z}}{\langle 9 \rangle} \,.$$

The evaluation map $\varphi: \mathbb{Z}[x] \to \mathbb{Z}$, defined for any f in $\mathbb{Z}[x]$ by $\varphi(f) = \operatorname{ev}_{x=0}(f) = f(0)$, and the canonical map $\pi: \mathbb{Z} \to \mathbb{Z}/\langle 9 \rangle$, defined for any integer m by $\pi(m) = [m]_9$, are ring homomorphisms. Hence, the composite map $\pi \varphi: \mathbb{Z}[x] \to \mathbb{Z}/\langle 9 \rangle$ is also a ring homomorphism. For any integer m, the polynomial $m \in \mathbb{Z}[x]$ having degree 0 maps to $[m]_9$, so the composite map $\pi \varphi$ is surjective. Since $\operatorname{Ker}(\pi) = \langle 9 \rangle$ and $\operatorname{Ker}(\varphi) = \langle x \rangle$, it follows that $\operatorname{Ker}(\pi \varphi) = \langle 9, x \rangle$. The First Isomorphism Theorem establishes that $\widetilde{\pi \varphi}: \mathbb{Z}[x]/\langle 9, x \rangle \to \mathbb{Z}/\langle 9 \rangle$ is a ring isomorphism.

It remains to show that $\langle 18, 81 \rangle = \langle 9 \rangle$ in \mathbb{Z} . Since 9 divides both 18 and 81, we have $\langle 18, 81 \rangle \subseteq \langle 9 \rangle$. Conversely, the equation (5)(18) + (-1)(81) = 9 implies that $\langle 18, 81 \rangle \supseteq \langle 9 \rangle$. Since $\langle 18, 81 \rangle = \langle 9 \rangle$, we also have $\mathbb{Z}[x]/\langle 9, x \rangle = \mathbb{Z}[x]/\langle 18, 81, x \rangle$.

Since $x^2 + 4x + 5 = (x + 2 + i)(x + 2 - i)$ in $\mathbb{C}[x]$, we next claim that

$$\frac{\mathbb{Z}[x]}{\langle x^2 + 4x + 5 \rangle} \cong \mathbb{Z}[i].$$

The evaluation map θ : $\mathbb{Z}[x] \to \mathbb{Z}[i]$, defined for any polynomial f in $\mathbb{Z}[x]$ by

$$\theta(f) := \operatorname{ev}_{x=-2-i}(f) = f(-2-i),$$

is a ring homomorphism. For any integers *a* and *b*, the polynomial (a + 2b) - bxin $\mathbb{Z}[x]$ maps to (a - 2b) - b(-2 - i) = a + bi, so the map θ is surjective. Since the polynomial $x^2 + 4x + 5$ has -2 + i as a root, we see that $\langle x^2 + 4x + 5 \rangle \subseteq \text{Ker}(\theta)$. Conversely, for any polynomial $f \in \text{Ker}(\theta)$, division with remainder shows that there is a polynomial q in $\mathbb{Z}[x]$ and an element and r in \mathbb{Z} such that $f = (x^2 + 4x + 5)q + r$. As $\theta(f) = 0 = \theta(x^2 + 4x + 5)$ and $\theta(r) = r$, we see that r = 0, $f \in \langle x^2 + 4x + 5 \rangle$, and $\text{Ker}(\theta) \subseteq \langle x^2 + 4x + 5 \rangle$. Therefore, the First Isomorphism Theorem establishes that $\overline{\theta}: \mathbb{Z}[x]/\langle x^2 + 4x + 5 \rangle \to \mathbb{Z}[i]$ is a ring isomorphism.

Remark. The evaluation map ψ : $\mathbb{Z}[x] \to \mathbb{Z}[i]$ defined, for any rational polynomial f, by $\psi(f) := f(-2+i)$ also induces the desired isomorphism.

P8.2. Match each of the quotient rings $\frac{\mathbb{R}[x]}{\langle x^2 - 2 \rangle}$ and $\frac{\mathbb{R}[x]}{\langle x^2 + 2 \rangle}$ with a ring *S* by exhibiting an explicit ring isomorphism.

Solution. Since $x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2})$ in $\mathbb{R}[x]$, we claim that

$$\frac{\mathbb{R}[x]}{\langle x^2 - 2 \rangle} \cong \mathbb{R} \times \mathbb{R} \,.$$

The map φ : $\mathbb{R}[x] \to \mathbb{R} \times \mathbb{R}$ defined, for any polynomial f in $\mathbb{R}[x]$, by

$$\varphi(f) = \left(\operatorname{ev}_{x=\sqrt{2}}(f), \operatorname{ev}_{x=-\sqrt{2}}(f)\right) = \left(f(\sqrt{2}), f(-\sqrt{2})\right),$$

is ring homomorphism, because it is just a product of evaluation maps. For any real numbers *a* and *b*, we have

$$\varphi\left(\frac{\sqrt{2}a}{4}(x+\sqrt{2})\right) = \left(\frac{\sqrt{2}a}{4}(\sqrt{2}+\sqrt{2}), -\frac{\sqrt{2}a}{4}(-\sqrt{2}+\sqrt{2})\right) = (a,0)$$
$$\varphi\left(-\frac{\sqrt{2}b}{4}(x-\sqrt{2})\right) = \left(-\frac{\sqrt{2}b}{4}(\sqrt{2}-\sqrt{2}), -\frac{\sqrt{2}b}{4}(-\sqrt{2}-\sqrt{2})\right) = (0,b),$$

so the map φ is surjective. Moreover, a real polynomial has $\pm \sqrt{2}$ as a root if and only if it is divisible by the polynomial $x \mp \sqrt{2}$. Hence, we deduce that

$$\operatorname{Ker}(\varphi) = \left\langle x - \sqrt{2} \right\rangle \cap \left\langle x + \sqrt{2} \right\rangle = \left\langle x^2 - 2 \right\rangle$$

Therefore, the First Isomorphism Theorem establishes that $\overline{\varphi}$: $\mathbb{Z}[x]/\langle x^2 - 2 \rangle \to \mathbb{R} \times \mathbb{R}$ is a ring isomorphism.

Since $x^2 + 2 = (x - \sqrt{2}i)(x + \sqrt{2}i)$ in $\mathbb{C}[x]$, we next claim that

$$\frac{\mathbb{R}[x]}{\langle x^2+2\rangle}\cong\mathbb{C}.$$

The evaluation map $\psi \colon \mathbb{R}[x] \to \mathbb{C}$, defined for any polynomial *f* by

$$\psi(f) = \operatorname{ev}_{x=\sqrt{2}\,\mathrm{i}}(f) = f(\sqrt{2}\,\mathrm{i}),$$

is a ring homomorphism. For any real numbers a and b, the image of the polynomial $a + (\sqrt{2})^{-1}bx$ is a + b i, so the map φ is surjective. Since the polynomial $x^2 + 2$ has $\sqrt{2}$ i as a root, we see that $\langle x^2 + 2 \rangle \subseteq \text{Ker}(\varphi)$. Conversely, for any polynomial $f \in \text{Ker}(\varphi)$, division with remainder shows that there exists polynomials q and r in $\mathbb{R}[x]$ such that $f = (x^2 + 2)q + r$ and $\deg(r) < 2$ or r = 0. As $\varphi(f) = 0 = \varphi(x^2 + 2)$, we see that $\varphi(r) = 0$. Since $\sqrt{2}$ i is not a real number, there is no nonzero polynomial of degree less than 2 having it as a root. Hence, we deduce that r = 0, $f \in \langle x^2 + 2 \rangle$, and $\text{Ker}(\varphi) \subseteq \langle x^2 + 2 \rangle$. Therefore, the First Isomorphism Theorem proves that $\tilde{\varphi} \colon \mathbb{R}[x]/\langle x^2 + 2 \rangle \to \mathbb{C}$ is a ring isomorphism.

Remark. The evaluation map η : $\mathbb{R}[x] \to \mathbb{C}$, defined for any real polynomial f by $\eta(f) := f(-\sqrt{2}i)$, also induces the desired isomorphism.

P8.3. Match each of the quotient rings $\frac{\mathbb{C}[x]}{\langle x^2 \rangle}$ and $\frac{\mathbb{Q}[x]}{\langle x^2 - 2 \rangle}$ with a ring *S* by describing an explicit ring isomorphism.

Solution. We claim that

$$\frac{\mathbb{C}[x]}{\langle x^2 \rangle} \cong \left\{ \begin{bmatrix} z & w \\ 0 & z \end{bmatrix} \mid z, w \in \mathbb{C} \right\}.$$

Consider the evaluation map φ from $\mathbb{C}[x]$ to the ring of (2×2) -matrices defined by $\varphi(c_m x^m + c_{m-1} x^{m-1} + \dots + c_1 x + c_0) = c_m \mathbf{N}^m + c_{m-1} \mathbf{N}^{m-1} + \dots + c_1 \mathbf{N} + c_0 \mathbf{N}^0$ where $\mathbf{N} := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. For any complex numbers z and w, we have

$$\varphi(wx+z) = w \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + z \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} z & w \\ 0 & z \end{bmatrix},$$

so the map φ is surjective. As

$$\mathbf{N}^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix},$$

it follows that $\mathbf{N}^m = 0$ for all integers *m* greater than 1. We deduce that $\langle x^2 \rangle = \text{Ker}(\varphi)$. Thus, the First Isomorphism Theorem proves that

$$\overline{\varphi}: \mathbb{C}[x]/\langle x^2 \rangle \to \left\{ \begin{bmatrix} z & w \\ 0 & z \end{bmatrix} \mid z, w \in \mathbb{C} \right\}$$

is a ring isomorphism.

Since $x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2})$ in $\mathbb{R}[x]$, we also claim that $\frac{\mathbb{Q}[x]}{\langle x^2 - 2 \rangle} \cong \mathbb{Q}[\sqrt{2}].$

The evaluation map $\psi: \mathbb{Q}[x] \to \mathbb{Q}[\sqrt{2}]$, defined for any polynomial *f* in $\mathbb{Q}[x]$, by

$$\psi(f) = ev_{x=\sqrt{2}}(f) = f(\sqrt{2}),$$

is ring homomorphism. For any real numbers *a* and *b*, we have $\psi(a + bx) = a + b\sqrt{2}$, so the map φ is surjective. Since the polynomial $x^2 - 2$ has $\sqrt{2}$ as a root, we see that $\langle x^2 - 2 \rangle \subseteq \text{Ker}(\varphi)$. Conversely, for any polynomial $f \in \text{Ker}(\varphi)$, division with remainder shows that there are polynomials *q* and *r* in $\mathbb{Q}[x]$ such that $f = (x^2 - 2)q + r$ and deg(*r*) < 2 or r = 0. As $\varphi(f) = 0 = \varphi(x^2 - 2)$, we see that $\varphi(r) = 0$. Since $\sqrt{2}$ is not a rational number, there is no nonzero polynomial of degree less than 2 having it as a root. Hence, we deduce that r = 0, $f \in \langle x^2 - 2 \rangle$, and $\text{Ker}(\varphi) \subseteq \langle x^2 - 2 \rangle$. Therefore, the First Isomorphism Theorem proves that $\overline{\varphi}: \mathbb{Q}[x]/\langle x^2 - 2 \rangle \to \mathbb{Q}[\sqrt{2}]$ is a ring isomorphism.

Remark. One can also replace the map ψ with the evaluation map $\mathbb{Q}[x] \to \mathbb{Q}[\sqrt{2}]$ sending *x* to $-\sqrt{2}$.

