
Solutions 08
Each quotient ring 𝑅/𝐼 in the top row of Table 1 is isomorphic to a ring 𝑆 in the bottom row.

Table 1. Table of quotient rings and rings

𝑅
𝐼

ℤ[𝑥]
⟨18, 81, 𝑥⟩

ℤ[𝑥]
⟨𝑥2 + 4𝑥+ 5⟩

ℝ[𝑥]
⟨𝑥2 − 2⟩

ℝ[𝑥]
⟨𝑥2 + 2⟩

ℂ[𝑥]
⟨𝑥2⟩

ℚ[𝑥]
⟨𝑥2 − 2⟩

𝑆 ℤ ℤ
⟨3⟩

ℤ
⟨9⟩ ℚ ℝ ℂ ℝ ×ℝ ℤ[i] ℚ[𝑥] ℚ[√2] ℝ[𝑥] {[𝑧 𝑤

0 𝑧]
|
| 𝑧,𝑤 ∈ ℂ}

P8.1. Match each of the quotient rings ℤ[𝑥]
⟨18, 81, 𝑥⟩ and ℤ[𝑥]

⟨𝑥2 + 4𝑥+ 5⟩ with a ring 𝑆 by exhibit‑
ing an explicit ring isomorphism.

Solution. We claim that
ℤ[𝑥]

⟨18, 81, 𝑥⟩ ≅
ℤ
⟨9⟩ .

The evaluation map𝜑∶ℤ[𝑥] → ℤ, defined for any𝑓 inℤ[𝑥] by𝜑(𝑓) = ev𝑥=0(𝑓) = 𝑓(0),
and the canonical map 𝜋∶ℤ → ℤ/⟨9⟩, defined for any integer 𝑚 by 𝜋(𝑚) = [𝑚]9, are
ring homomorphisms. Hence, the composite map 𝜋𝜑∶ℤ[𝑥] → ℤ/⟨9⟩ is also a ring
homomorphism. For any integer 𝑚, the polynomial 𝑚 ∈ ℤ[𝑥] having degree 0 maps
to [𝑚]9, so the composite map 𝜋𝜑 is surjective. Since Ker(𝜋) = ⟨9⟩ and Ker(𝜑) = ⟨𝑥⟩,
it follows that Ker(𝜋𝜑) = ⟨9, 𝑥⟩. The First Isomorphism Theorem establishes that
𝜋𝜑∶ℤ[𝑥]/⟨9, 𝑥⟩ → ℤ/⟨9⟩ is a ring isomorphism.

It remains to show that ⟨18, 81⟩ = ⟨9⟩ in ℤ. Since 9 divides both 18 and 81,
we have ⟨18, 81⟩ ⊆ ⟨9⟩. Conversely, the equation (5)(18) + (−1)(81) = 9 implies that
⟨18, 81⟩ ⊇ ⟨9⟩. Since ⟨18, 81⟩ = ⟨9⟩, we also have ℤ[𝑥]/⟨9, 𝑥⟩ = ℤ[𝑥]/⟨18, 81, 𝑥⟩.

Since 𝑥2 + 4𝑥+ 5 = (𝑥 + 2 + i)(𝑥 + 2 − i) in ℂ[𝑥], we next claim that
ℤ[𝑥]

⟨𝑥2 + 4𝑥+ 5⟩ ≅ ℤ[i] .

The evaluation map 𝜃∶ℤ[𝑥] → ℤ[i], defined for any polynomial 𝑓 in ℤ[𝑥] by
𝜃(𝑓)∶= ev𝑥=−2−i(𝑓) = 𝑓(−2 − i) ,

is a ring homomorphism. For any integers 𝑎 and 𝑏, the polynomial (𝑎 + 2𝑏) − 𝑏𝑥
in ℤ[𝑥] maps to (𝑎 − 2𝑏) − 𝑏(−2 − i) = 𝑎 + 𝑏 i, so the map 𝜃 is surjective. Since
the polynomial 𝑥2 + 4𝑥 + 5 has −2 + i as a root, we see that ⟨𝑥2 + 4𝑥+ 5⟩ ⊆ Ker(𝜃).
Conversely, for any polynomial 𝑓 ∈ Ker(𝜃), division with remainder shows that there
is a polynomial 𝑞 in ℤ[𝑥] and an element and 𝑟 in ℤ such that 𝑓 = (𝑥2 + 4𝑥 + 5)𝑞 + 𝑟.
As 𝜃(𝑓) = 0 = 𝜃(𝑥2 + 4𝑥 + 5) and 𝜃(𝑟) = 𝑟, we see that 𝑟 = 0, 𝑓 ∈ ⟨𝑥2 + 4𝑥+ 5⟩, and
Ker(𝜃) ⊆ ⟨𝑥2 + 4𝑥+ 5⟩. Therefore, the First Isomorphism Theorem establishes that
𝜃∶ℤ[𝑥]/⟨𝑥2 + 4𝑥+ 5⟩ → ℤ[i] is a ring isomorphism.

Remark. The evaluation map 𝜓∶ℤ[𝑥] → ℤ[i] defined, for any rational polynomial 𝑓,
by 𝜓(𝑓)∶= 𝑓(−2 + 𝑖) also induces the desired isomorphism.
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□

P8.2. Match each of the quotient rings ℝ[𝑥]
⟨𝑥2 − 2⟩ and ℝ[𝑥]

⟨𝑥2 + 2⟩ with a ring 𝑆 by exhibiting an
explicit ring isomorphism.

Solution. Since 𝑥2 − 2 = (𝑥 −√2)(𝑥 +√2) in ℝ[𝑥], we claim that
ℝ[𝑥]

⟨𝑥2 − 2⟩ ≅ ℝ × ℝ .

The map 𝜑∶ℝ[𝑥] → ℝ ×ℝ defined, for any polynomial 𝑓 in ℝ[𝑥], by

𝜑(𝑓) = (ev𝑥=√2(𝑓), ev𝑥=−√2(𝑓)) = (𝑓(√2), 𝑓(−√2)) ,

is ring homomorphism, because it is just a product of evaluation maps. For any real
numbers 𝑎 and 𝑏, we have

𝜑(√2𝑎4 (𝑥 +√2)) = (√2𝑎4 (√2 +√2),−√2𝑎
4 (−√2 +√2)) = (𝑎, 0)

𝜑(−√2𝑏
4 (𝑥 −√2)) = (−√2𝑏

4 (√2 −√2),−√2𝑏
4 (−√2 −√2)) = (0, 𝑏) ,

so the map 𝜑 is surjective. Moreover, a real polynomial has ±√2 as a root if and only
if it is divisible by the polynomial 𝑥 ∓ √2. Hence, we deduce that

Ker(𝜑) = ⟨𝑥 −√2⟩ ∩ ⟨𝑥 +√2⟩ = ⟨𝑥2 − 2⟩ .

Therefore, the First Isomorphism Theorem establishes that 𝜑∶ℤ[𝑥]/⟨𝑥2 − 2⟩ → ℝ×ℝ
is a ring isomorphism.

Since 𝑥2 + 2 = (𝑥 −√2 i)(𝑥 + √2 i) in ℂ[𝑥], we next claim that
ℝ[𝑥]

⟨𝑥2 + 2⟩ ≅ ℂ .

The evaluation map 𝜓∶ℝ[𝑥] → ℂ, defined for any polynomial 𝑓 by

𝜓(𝑓) = ev𝑥=√2 i(𝑓) = 𝑓(√2 i) ,

is a ring homomorphism. For any real numbers 𝑎 and 𝑏, the image of the polynomial
𝑎+(√2)−1𝑏𝑥 is 𝑎+𝑏 i, so the map 𝜑 is surjective. Since the polynomial 𝑥2+2 has √2 i
as a root, we see that ⟨𝑥2 + 2⟩ ⊆ Ker(𝜑). Conversely, for any polynomial 𝑓 ∈ Ker(𝜑),
division with remainder shows that there exists polynomials 𝑞 and 𝑟 inℝ[𝑥] such that
𝑓 = (𝑥2+2)𝑞+𝑟 and deg(𝑟) < 2 or 𝑟 = 0. As𝜑(𝑓) = 0 = 𝜑(𝑥2+2), we see that𝜑(𝑟) = 0.
Since √2 i is not a real number, there is no nonzero polynomial of degree less than 2
having it as a root. Hence, we deduce that 𝑟 = 0, 𝑓 ∈ ⟨𝑥2 + 2⟩, and Ker(𝜑) ⊆ ⟨𝑥2 + 2⟩.
Therefore, the First Isomorphism Theorem proves that 𝜑∶ℝ[𝑥]/⟨𝑥2 + 2⟩ → ℂ is a ring
isomorphism. □

Remark. The evaluation map 𝜂∶ ℝ[𝑥] → ℂ, defined for any real polynomial 𝑓 by
𝜂(𝑓)∶= 𝑓(−√2 i), also induces the desired isomorphism.
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P8.3. Match each of the quotient rings ℂ[𝑥]
⟨𝑥2⟩ and ℚ[𝑥]

⟨𝑥2 − 2⟩ with a ring 𝑆 by describing an
explicit ring isomorphism.

Solution. We claim that
ℂ[𝑥]
⟨𝑥2⟩ ≅ {[𝑧 𝑤

0 𝑧]
|
| 𝑧,𝑤 ∈ ℂ} .

Consider the evaluation map 𝜑 from ℂ[𝑥] to the ring of (2 × 2)‑matrices defined by
𝜑(𝑐𝑚 𝑥𝑚 + 𝑐𝑚−1 𝑥𝑚−1 +⋯+ 𝑐1 𝑥 + 𝑐0) = 𝑐𝑚 N𝑚 + 𝑐𝑚−1 N𝑚−1 +⋯+ 𝑐1 N + 𝑐0 N0

where N∶= [0 1
0 0]. For any complex numbers 𝑧 and 𝑤, we have

𝜑(𝑤𝑥+ 𝑧) = 𝑤 [0 1
0 0] + 𝑧 [1 0

0 1] = [𝑧 𝑤
0 𝑧] ,

so the map 𝜑 is surjective. As

N2 = [0 1
0 0] [

0 1
0 0] = [0 0

0 0] ,

it follows that N𝑚 = 0 for all integers 𝑚 greater than 1. We deduce that ⟨𝑥2⟩ = Ker(𝜑).
Thus, the First Isomorphism Theorem proves that

𝜑∶ℂ[𝑥]/⟨𝑥2⟩ → {[𝑧 𝑤
0 𝑧]

|
| 𝑧,𝑤 ∈ ℂ}

is a ring isomorphism.

Since 𝑥2 − 2 = (𝑥 −√2)(𝑥 +√2) in ℝ[𝑥], we also claim that
ℚ[𝑥]

⟨𝑥2 − 2⟩ ≅ ℚ[√2] .

The evaluation map 𝜓∶ℚ[𝑥] → ℚ[√2], defined for any polynomial 𝑓 in ℚ[𝑥], by
𝜓(𝑓) = ev𝑥=√2(𝑓) = 𝑓(√2) ,

is ring homomorphism. For any real numbers 𝑎 and 𝑏, we have 𝜓(𝑎 + 𝑏𝑥) = 𝑎 +
𝑏√2, so the map 𝜑 is surjective. Since the polynomial 𝑥2 − 2 has √2 as a root, we
see that ⟨𝑥2 − 2⟩ ⊆ Ker(𝜑). Conversely, for any polynomial 𝑓 ∈ Ker(𝜑), division with
remainder shows that there are polynomials 𝑞 and 𝑟 inℚ[𝑥] such that𝑓 = (𝑥2−2)𝑞+𝑟
and deg(𝑟) < 2 or 𝑟 = 0. As 𝜑(𝑓) = 0 = 𝜑(𝑥2 − 2), we see that 𝜑(𝑟) = 0. Since
√2 is not a rational number, there is no nonzero polynomial of degree less than 2
having it as a root. Hence, we deduce that 𝑟 = 0, 𝑓 ∈ ⟨𝑥2 − 2⟩, and Ker(𝜑) ⊆ ⟨𝑥2 − 2⟩.
Therefore, the First Isomorphism Theorem proves that 𝜑∶ℚ[𝑥]/⟨𝑥2 − 2⟩ → ℚ[√2] is
a ring isomorphism. □

Remark. One can also replace the map 𝜓 with the evaluation map ℚ[𝑥] → ℚ[√2]
sending 𝑥 to −√2.
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