Solutions 08

Each quotient ring R/I in the top row of Table 1 is isomorphic to a ring S in the bottom row.

Table 1. Table of quotient rings and rings

R Z[x] Z[x] R[x] R[x] Clx] Q[x]
I x (18,81,x) (x2+4x+5) (x2-2) (x2+42) (x2) (x2-2)
zZ Z . Z w
SYZ & @ @R CRxR Zil Qx] Q[v2] Rix {1z %]|zwec]
P8.1. Match each of the quotient rings Zlx] and Zlx] with a ring S by exhibit-
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2
ing an explicit ring isomorphism.<18’ 81, x) (2 +4x +5)

Solution. We claim that
Zlx] _Z
(18,81,x) — (9)°

The evaluation map ¢: Z[x] — Z, defined for any f in Z[x] by ¢(f) = ev,_o(f) = f(0),
and the canonical map 7: Z — Z/(9>, defined for any integer m by (m) = [m],, are
ring homomorphisms. Hence, the composite map 7w ¢: Z[x] - Z / (9) is also a ring
homomorphism. For any integer m, the polynomial m € Z[x] having degree 0 maps
to [m]y, so the composite map 7 ¢ is surjective. Since Ker(7r) = (9) and Ker(¢) = (x),
it follows that Ker(r ¢) = (9, x). The First Isomorphism Theorem establishes that
7T@: Z[x]/(9,x) — Z/(9) is a ring isomorphism.

It remains to show that (18,81) = (9) in Z. Since 9 divides both 18 and 81,
we have (18, 81) C (9). Conversely, the equation (5)(18) + (—1)(81) = 9 implies that
(18,81) 2 (9). Since (18,81) = (9), we also have Z[x] /(9, x) = Z[x] /(18, 81, x).

Since x? + 4x + 5 = (x + 2 + i)(x + 2 — i) in C[x], we next claim that
Z|x] .

rax+s U

The evaluation map 6: Z[x] — Z|[i], defined for any polynomial f in Z[x] by

0(f) = eve— () = f(=2 1),

is a ring homomorphism. For any integers a and b, the polynomial (a + 2b) — bx
in Z[x] maps to (a — 2b) — b(—2 — i) = a + bi, so the map 6 is surjective. Since
the polynomial x? + 4x + 5 has —2 + i as a root, we see that (x? + 4x + 5) C Ker(9).
Conversely, for any polynomial f € Ker(0), division with remainder shows that there
is a polynomial q in Z[x] and an element and r in Z such that f = (x? + 4x + 5)q + r.
AsO(f) =0 =06(x*+4x +5)and 6(r) = r, we see thatr = 0, f € (x> + 4x + 5), and
Ker(0) C (x? + 4x + 5). Therefore, the First Isomorphism Theorem establishes that
6: Z[x]/(x* + 4x + 5) > Z[i] is a ring isomorphism.

Remark. The evaluation map : Z[x] - Z]i] defined, for any rational polynomial f,
by ¥(f) := f(—2 + i) also induces the desired isomorphism.
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R[x] d R[x]

P8.2. Match each of the quotient rings xz—2) an 2 +2)

explicit ring isomorphism.

with a ring S by exhibiting an

Solution. Since x2 — 2 = (x —\/2)(x + V/2) in R[x], we claim that

R[x] N
(x2-2) — RXR.

The map ¢: R[x] - R X R defined, for any polynomial f in R[x], by
o(f) = (v, 5 (s v, _5(N) = (FW2), F(—V2)),

is ring homomorphism, because it is just a product of evaluation maps. For any real
numbers a and b, we have

o 220D = (B20E 4 VD, - Y22 4V = (@0
o L2200V = (V2203 -V, - Y23 - VD)) = o,

so the map ¢ is surjective. Moreover, a real polynomial has +4/2 as a root if and only
if it is divisible by the polynomial x ¥ /2. Hence, we deduce that

Ker(qo):<x—\/§>n<x+\/5>:<x2—2>.

Therefore, the First Isomorphism Theorem establishes that ¢: Z[x]/(x? — 2) - RxR
is a ring isomorphism.

Since x2 + 2 = (x — v/21)(x + V/21) in C[x], we next claim that
Rx] _
(x24+2) =
The evaluation map ¥: R[x] — C, defined for any polynomial f by

P = vy, () = f(V2i),

is a ring homomorphism. For any real numbers a and b, the image of the polynomial
a+ (\2)~'bx is a + bi, so the map g is surjective. Since the polynomial x? + 2 has /21
as a root, we see that (x? + 2) C Ker(p). Conversely, for any polynomial f € Ker(¢p),
division with remainder shows that there exists polynomials g and r in R[x] such that
f =(x*+2)g+randdeg(r) <2orr = 0. Asp(f) = 0 = p(x?+2), we see that ¢(r) = 0.
Since \/Ei is not a real number, there is no nonzero polynomial of degree less than 2
having it as a root. Hence, we deduce thatr = 0, f € (x? + 2), and Ker(p) C (x? + 2).
Therefore, the First Isomorphism Theorem proves that ¢: R[x] / (x> +2) - Cisaring
isomorphism. OJ

Remark. The evaluation map 7: R[x] — C, defined for any real polynomial f by
n(fH=fr (—\/5 i), also induces the desired isomorphism.
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Clx] Q[x]
oy 4 ne )

P8.3. Match each of the quotient rings
explicit ring isomorphism.

with a ring S by describing an

Solution. We claim that

g;‘)]g{gg](z,wec}.

Consider the evaluation map ¢ from C[x] to the ring of (2 x 2)-matrices defined by
PCpy X"+ Cppg X" 1+ oty x+ o) =y N+ ] N L oo + ¢ N + ¢ N°

where N := [8 (1)] For any complex numbers z and w, we have

plwx+z)=w [8 (1)]+z [(1) (1)] = [g L;] ,
so the map ¢ is surjective. As
Nz_[O 1 [0 1 _[00
~—10 0]]10 0] " 10 0)°
it follows that N™ = 0 for all integers m greater than 1. We deduce that (x*) = Ker(¢p).
Thus, the First Isomorphism Theorem proves that

@: C[x]/(x?) —>{ z LZU] { Z,W € C}
is a ring isomorphism.

Since x2 — 2 = (x — vV2)(x + 1/2) in R[x], we also claim that

Q

The evaluation map %: Q[x] — Q[+/2], defined for any polynomial f in Q[x], by
»(f) = ev,_5() = F(V2),

is ring homomorphism. For any real numbers a and b, we have ¥(a + bx) = a +
b\/E, so the map ¢ is surjective. Since the polynomial x? — 2 has \/5 as a root, we
see that (x? — 2) C Ker(¢p). Conversely, for any polynomial f € Ker(¢), division with
remainder shows that there are polynomials g and r in Q[x] such that f = (x?—-2)q+7r
and deg(r) < 2orr = 0. As p(f) = 0 = @(x? — 2), we see that ¢(r) = 0. Since

2 is not a rational number, there is no nonzero polynomial of degree less than 2
having it as a root. Hence, we deduce that r = 0, f € (x* — 2), and Ker(p) C (x* — 2).

Therefore, the First Isomorphism Theorem proves that ¢: Q[x] / (x*=2) > @[\/5] is
a ring isomorphism. O

Remark. One can also replace the map 3 with the evaluation map Q[x] — @[\/5]
sending x to —v2.
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