
Solutions 12
P12.1. Euclid proves that there are infinitely many prime integers in the following way: if

𝑝1, 𝑝2, … , 𝑝𝑘 are positive prime integers, then any prime factor of 1 + 𝑝1 𝑝2⋯𝑝𝑘 must
be different from 𝑝𝑗 for any 1 ⩽ 𝑗 ⩽ 𝑘.
i. Adapt this argument to show that the set of prime integers of the form 4𝑛 − 1 is

infinite.
ii. Adapt this argument to show that, for any field 𝕂, there are infinitely many monic

irreducible polynomials in 𝕂[𝑥].

Solution.
i. By considering their remainder upon division by 4, we see that every positive

prime integer, except for 2, has the form 4𝑛 ± 1 for some nonnegative integer 𝑛.
Suppose that there are only finitely many primes 𝑝1, 𝑝2, … , 𝑝𝑘 of the form 4𝑛 − 1.
The integer 𝑚∶= 4 (𝑝1 𝑝2⋯𝑝𝑘) − 1 is a product of positive prime integers. Since
the product of two primes of the form 4𝑛 + 1 also has the form 4𝑛 + 1, the odd
number 𝑚 must be divisible by at least one prime of the form 4𝑛− 1. This prime
factor of 𝑚 is necessarily distinct from all 𝑝𝑗, because otherwise it would divide
−1. Therefore, the set of prime integers of the form 4𝑛 − 1 is infinite.

ii. Consider a nonempty finite set {𝑓1, 𝑓2, … , 𝑓𝑘} of monic irreducible polynomials in
𝕂[𝑥]. Since the principal ideal domain 𝕂[𝑥] is also a unique factorization domain,
the polynomial 1+𝑓1𝑓2⋯𝑓𝑘, which is not a unit, is a product of a unit and monic
irreducible polynomials. Any monic irreducible factor is necessarily distinct from
all the 𝑓𝑗, because otherwise it would divide 1. No finite set of monic irreducible
polynomials includes all the monic irreducible polynomials, so we conclude that
the set of monic irreducible polynomials in 𝕂[𝑥] is infinite. □

P12.2. i. Let 𝑓∶= 𝑎3 𝑥3+𝑎2 𝑥2+𝑎1 𝑥+𝑎0 be a polynomial inℤ[𝑥] having degree 3. Assume
that 𝑎0, 𝑎1 + 𝑎2, and 𝑎3 are all odd. Prove that 𝑓 is irreducible in ℚ[𝑥].

ii. Prove that the polynomial 𝑔∶= 𝑥5+6𝑥4−12𝑥3+9𝑥2−3𝑥+𝑘 inℚ[𝑥] is irreducible
for infinitely many integers 𝑘.

iii. Prove that ℎ∶= 𝑥5+𝑥4+𝑥−1 is irreducible in ℚ[𝑥] using the Eisenstein criterion.

Solution.
i. Since 𝑎1 + 𝑎2 is odd, one of these coefficients is even and the other is odd. As
𝑎0 and 𝑎3 are odd, the image of 𝑓 in 𝔽2[𝑥] is either 𝑥3 + 𝑥2 + 1 or 𝑥2 + 𝑥 + 1.
Our illustration of sieve methods for polynomials established that both of these
polynomials are irreducible in 𝔽2[𝑥]. It follows that 𝑓 is also irreducible in ℚ[𝑥].

ii. Observe that 3 does not divide 1, but 3 does divide 6, −12, 9, and −3. Hence, the
Eisenstein criterion implies that the polynomial 𝑔 is irreducible inℚ[𝑥]whenever
3 divides 𝑘 and 9 does not divide 𝑘. It follows that 𝑔 is irreducible if 𝑘 = 9𝑛 + 3
or 𝑘 = 9𝑛+6 for some integer 𝑛. In particular, the polynomial 𝑔 is irreducible in
ℚ[𝑥] for infinitely many integers 𝑘.

iii. Consider the ring isomorphism𝜑∶ℚ[𝑥]→ℚ[𝑥] defined by𝜑(𝑥) = 𝑥−1. It follows
that the polynomial ℎ is irreducible in ℚ[𝑥] if and only if the polynomial 𝜑(ℎ) is
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irreducible in ℚ[𝑥]. Since
𝜑(ℎ) = (𝑥 − 1)5 + (𝑥 − 1)4 + (𝑥 − 1) − 1

= (𝑥5 − 5𝑥4 + 10𝑥3 − 10𝑥2 + 5𝑥 − 1) + (𝑥4 − 4𝑥3 + 6𝑥2 − 4𝑥+ 1) + 𝑥 − 2
= 𝑥5 − 4𝑥4 + 6𝑥3 − 4𝑥2 + 2𝑥 − 2
we see that 2 does not divide 1, 2 does divide −4, 6, 4, 2, and −2, and 4 does not
divide −2. Thus, the Eisenstein criterion establishes that the polynomial 𝜑(ℎ) is
irreducible in ℚ[𝑥]. □

P12.3. Let 𝑅 be a principal ideal domain and let 𝐾 be its field of fractions.
i. Suppose 𝑅 = ℤ. Write the rational number 𝑟 = 7

24 in the form 𝑟 = 𝑏
3 +

𝑎
8 for some

integers 𝑎 and 𝑏.
ii. Let 𝑔 ∶= 𝑝𝑞 ∈ 𝑅 where 𝑝 and 𝑞 are coprime. Prove that every fraction 𝑓/𝑔 ∈ 𝐾

can written in the form 𝑓
𝑔 = 𝑢

𝑞 + 𝑣
𝑝

for some elements 𝑢 and 𝑣 in 𝑅.
iii. Let 𝑔 ∶= 𝑝𝑒11 𝑝𝑒22 ⋯𝑝𝑒𝑚𝑚 ∈ 𝑅 be the factorization of 𝑔 into irreducible elements 𝑝𝑗,

for all 1 ⩽ 𝑗 ⩽ 𝑚, such that the relation 𝑝𝑗 = 𝑢𝑝𝑘 for some unit 𝑢 ∈ 𝑅 implies that
𝑗 = 𝑘. Prove that every fraction 𝑓/𝑔 ∈ 𝐾 can be written in the form

𝑓
𝑔 =

𝑘
∑
𝑗=1

ℎ𝑗
𝑝𝑒𝑗𝑗

for some elements ℎ1, ℎ2, … , ℎ𝑚 in 𝑅.

Solution.
i Since (−1)(8) + (3)(3) = 1, we have

𝑟 = 7
24 =

7((−1)(8) + (3)(3))
24 = −7

3 + 21
8 .

ii Since gcd(𝑝, 𝑞) = 1, there exists elements 𝑠 and 𝑡 in𝑅 such that 𝑠 𝑝+𝑡𝑞 = 1. Hence
we obtain

𝑓
𝑔 = 𝑓(𝑠𝑝 + 𝑡𝑞)

𝑝𝑞 = 𝑓 𝑠
𝑞 + 𝑓 𝑡

𝑝 .
iii We proceed by induction on 𝑚. For the base case, when 𝑚 = 1, the assertion is

trivial. For the induction step, set 𝑝 ∶= 𝑝𝑒11 and 𝑞 ∶= 𝑝𝑒22 𝑝𝑒33 ⋯𝑝𝑒𝑚𝑚 . By hypothesis,
we have gcd(𝑝, 𝑞) = 1, so there exists elements 𝑠 and 𝑡 in 𝑅 such that 𝑠 𝑝+ 𝑡𝑞 = 1.
It follows that

𝑓
𝑔 = 𝑓(𝑠𝑝 + 𝑡𝑞)

𝑝𝑞 = 𝑓 𝑠
𝑞 + 𝑓 𝑡

𝑝 = 𝑓 𝑠
𝑝𝑒11

+ 𝑓 𝑡
𝑝𝑒22 𝑝𝑒33 ⋯𝑝𝑒𝑚𝑚

The induction hypothesis establishes that

𝑓 𝑡
𝑝𝑒22 𝑝𝑒33 ⋯𝑝𝑒𝑚𝑚

=
𝑚
∑
𝑗=2

ℎ𝑗
𝑝𝑒𝑗𝑗

for some elements ℎ2, ℎ3, … , ℎ𝑚 in 𝑅. Setting ℎ1∶= 𝑓 𝑠 gives 𝑓/𝑔 = ∑𝑚
𝑗=1 ℎ𝑗/𝑝

𝑒𝑗
𝑗 . □
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