Problem Set \#1
 Due: Friday, 17 January 2020

1. Use MathSciNet (available at http://www.ams.org. proxy.queensu.ca/mathscinet/), the arXiv (available at https://arxiv.org or http://front.math.ucdavis.edu), and mathoverflow (available at https://mathoverflow.net) to answer the following questions:
(a) Count the publications with the phrase "symmetric group" in their title.
(b) How many representation theory preprints appeared on the e-print archives in December 2019?
(c) Estimate the number of research level math questions tagged with 'rt.representation-theory'.
2. (a) How many of the following references

- Miklós Bóna, Combinatorics of permutations, Second edition, Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 2012.
- David M. Bressoud, Proofs and confirmations, MAA Spectrum, Mathematical Association of America, Cambridge University Press, Cambridge, 1999.
- Peter J. Cameron, Permutation groups, London Mathematical Society Student Texts 45, Cambridge University Press, Cambridge, 1999.
- Tullio Ceccherini-Silberstein, Fabio Scarabotti, and Filippo Tolli, Representation theory of the symmetric groups, Cambridge Studies in Advanced Mathematics 121, Cambridge University Press, Cambridge, 2010.
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics 129, Readings in Mathematics, Springer-Verlag, New York, 1991.
- Gordon D. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics 682, Springer, Berlin, 1978.
- Tsit Yuen Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics 67, American Mathematical Society, Providence, RI, 2005.
- Ambar N. Sengupta, Representing finite groups, Springer, New York, 2012. are available through the Queen's library?
(b) Can you find another interesting reference related to the material in this course?

3. For any permutation $\sigma \in \mathfrak{S}_{n}$, the inversion number $N(\sigma)$ counts the pairs (k, ℓ) such that $1 \leqslant k<\ell \leqslant n$ and $\sigma(k)>\sigma(\ell)$. For example, the inversion number of $723561498 \in \mathfrak{S}_{9}$ is
$13=|\{(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,6),(3,6),(4,6),(4,7),(5,6),(5,7),(8,9)\}|$.
(a) For any permutation $\sigma \in \mathfrak{S}_{n}$ and any transposition $\tau \in \mathfrak{S}_{n}$, show that the inversion numbers $N(\sigma)$ and $N(\sigma \tau)$ have the opposite parity (in other words, one number is even and the other is odd).
(b) For any $\sigma \in \mathfrak{S}_{n}$, demonstrate that $\operatorname{sgn}(\sigma)=(-1)^{N(\sigma)}$.
4. Fix $n \in \mathbb{N}$. For all $1 \leqslant i<n$, consider the adjacent transposition $s_{i} \in \mathfrak{S}_{n}$ defined by $s_{i}(i)=i+1$, $s_{i}(i+1)=i$, and $s_{i}(j)=j$ for all $j \in[n] \backslash\{i, i+1\}$.
(a) Verify that the adjacent transpositions satisfy the following relations:

$$
\begin{aligned}
s_{i}^{2} & =1 & & \text { for all } 1 \leqslant i<n, \\
s_{i} s_{i+1} s_{i} & =s_{i+1} s_{i} s_{i+1} & & \text { for all } 1 \leqslant i<n, \\
s_{i} s_{j} & =s_{j} s_{i} & & \text { for all }|i-j| \geqslant 2 .
\end{aligned}
$$

(b) Prove that every permutation is a product of adjacent transpositions.
(c) Express $723561498 \in \mathfrak{S}_{9}$ as a product of adjacent transpositions.
5. (a) Let $\sigma \in \mathfrak{S}_{n}$ be a cycle of length k. Prove that $\sigma^{k}=1$, but $\sigma^{j} \neq 1$ for all $1 \leqslant j<k$.
(b) For any integer n greater than 2 , show that the symmetric group \mathfrak{S}_{n} is generated by two elements: the transposition (2 1) and the cycle ($\left.\begin{array}{lllll}n & 1 & 2 & 3 & \cdots\end{array}\right) n-1$).

