Problem Set #2 Due: Friday, 31 January 2020

- **1.** Find a transversal for the subgroup $Y := \langle (2 \ 1), (3 \ 2), (5 \ 4) \rangle$ in \mathfrak{S}_5 .
- 2. Fix positive integer *n*. Let $\rho_{def} : \mathfrak{S}_n \to \operatorname{GL}(\mathbb{C}^n)$ be the defining permutation representation for \mathfrak{S}_n and let $\vec{\mathbf{e}}_1, \vec{\mathbf{e}}_2, \dots, \vec{\mathbf{e}}_n$ denote the standard basis for \mathbb{C}^n . Consider the (n-1)-dimensional linear subspace $W := \operatorname{Span}(\vec{\mathbf{e}}_1 \vec{\mathbf{e}}_n, \vec{\mathbf{e}}_2 \vec{\mathbf{e}}_n, \dots, \vec{\mathbf{e}}_{n-1} \vec{\mathbf{e}}_n) \subset \mathbb{C}^n$.
 - (a) Show that W is a subrepresentation of the defining permutation representation.
 - (b) Calculate the matrices, with respect to the defining basis of W, corresponding to the permutations $(n \ 1 \ 2 \ \cdots \ n-1)$, and $(i+1 \ i)$ for all $1 \le i < n$.
- **3.** The symmetric group \mathfrak{S}_n has a natural action on each of its conjugacy classes. To be more explicit, let $C(\sigma) \subset \mathfrak{S}_n$ denote conjugacy class containing the permutation $\sigma \in \mathfrak{S}_n$. Setting $m := |C(\sigma)|$, we identify the standard basis of the vector space \mathbb{C}^m with the elements of $C(\sigma)$. If $\mathbf{\vec{e}}_{\tau}$ denotes a basis vector for \mathbb{C}^m , then the induced action, given by $\tau \mathbf{\vec{e}}_{\omega} = \mathbf{\vec{e}}_{\tau \omega \tau^{-1}}$ for all $\tau \in \mathfrak{S}_n$ and all $\omega \in C(\sigma)$, determines a permutation representation $\rho : \mathfrak{S}_n \to \mathrm{GL}(\mathbb{C}^m)$.
 - (a) For n = 4 and $C((2 \ 1)(4 \ 3))$, compute the matrices $\rho((i+1 \ i))$ for all $1 \le i < n$.
 - (b) Prove that the representation $\rho : \mathfrak{S}_4 \to \mathrm{GL}(\mathbb{C}^3)$ from part (a) is not irreducible.
- **4.** Consider the regular tetrahedron in \mathbb{R}^3 , centered the origin, defined by the four vertices

$$\left(1,0,-\frac{1}{\sqrt{2}}\right) \qquad \left(-1,0,-\frac{1}{\sqrt{2}}\right), \qquad \left(0,1,\frac{1}{\sqrt{2}}\right), \qquad \left(0,-1,\frac{1}{\sqrt{2}}\right).$$

- (a) With the vertices indexed in the given order, compute the matrices corresponding to the adjacent transpositions $(i+1 \ i)$ for all $1 \le i < 4$.
- (b) Show that the symmetries of this tetrahedron determine a representation of \mathfrak{S}_4 via the induced action on the vertices.
- (c) Prove that this representation is irreducible.

Hint. Relative to the standard basis for \mathbb{R}^3 , the reflection in the plane ax + by + cz = 0 is given by the matrix

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \frac{2}{a^2 + b^2 + c^2} \begin{bmatrix} a \\ b \\ c \end{bmatrix} \begin{bmatrix} a & b & c \end{bmatrix}.$$

- **5.** Let U be the submodule of the group algebra $\mathbb{C}[\mathfrak{S}_3]$ generated by $\vec{\mathbf{u}}_1 \coloneqq \mathbf{1} (2 \ 1) + (3 \ 2) (3 \ 1 \ 2)$.
 - (a) Show that U is isomorphic to the two-dimensional irreducible subrepresentation of the defining permutation representation of \mathfrak{S}_3 (also known as the standard representation).
 - (**b**) For all $\tau \in \mathfrak{S}_3$, let $U_{\tau} := \{\tau \vec{\mathbf{u}} \tau^{-1} \in \mathbb{C}[\mathfrak{S}_n] \mid \vec{\mathbf{u}} \in U\}$. Prove that $U \oplus U_{(2\ 1)} = U \oplus U_{(3\ 1)}$ but $U_{(2\ 1)} \neq U_{(3\ 1)}$.

