Problem Set \#2

Due: Friday, 31 January 2020

1. Find a transversal for the subgroup $Y:=\left\langle\left(\begin{array}{ll}2 & 1\end{array}\right),\left(\begin{array}{ll}3 & 2\end{array}\right),\left(\begin{array}{ll}5 & 4\end{array}\right)\right\rangle$ in \mathfrak{S}_{5}.
2. Fix positive integer n. Let $\rho_{\text {def }}: \mathfrak{S}_{n} \rightarrow \mathrm{GL}\left(\mathbb{C}^{n}\right)$ be the defining permutation representation for \mathfrak{S}_{n} and let $\overrightarrow{\mathbf{e}}_{1}, \overrightarrow{\mathbf{e}}_{2}, \ldots, \overrightarrow{\mathbf{e}}_{n}$ denote the standard basis for \mathbb{C}^{n}. Consider the $(n-1)$-dimensional linear subspace $W:=\operatorname{Span}\left(\overrightarrow{\mathbf{e}}_{1}-\overrightarrow{\mathbf{e}}_{n}, \overrightarrow{\mathbf{e}}_{2}-\overrightarrow{\mathbf{e}}_{n}, \ldots, \overrightarrow{\mathbf{e}}_{n-1}-\overrightarrow{\mathbf{e}}_{n}\right) \subset \mathbb{C}^{n}$.
(a) Show that W is a subrepresentation of the defining permutation representation.
(b) Calculate the matrices, with respect to the defining basis of W, corresponding to the permutations ($n 12 \cdots \cdots-1$), and $(i+1 i)$ for all $1 \leqslant i<n$.
3. The symmetric group \mathfrak{S}_{n} has a natural action on each of its conjugacy classes. To be more explicit, let $C(\sigma) \subset \mathfrak{S}_{n}$ denote conjugacy class containing the permutation $\sigma \in \mathfrak{S}_{n}$. Setting $m:=|C(\sigma)|$, we identify the standard basis of the vector space \mathbb{C}^{m} with the elements of $C(\sigma)$. If $\overrightarrow{\mathbf{e}}_{\tau}$ denotes a basis vector for \mathbb{C}^{m}, then the induced action, given by $\tau \overrightarrow{\mathbf{e}}_{\omega}=\overrightarrow{\mathbf{e}}_{\tau \omega \tau^{-1}}$ for all $\tau \in \mathfrak{S}_{n}$ and all $\omega \in C(\sigma)$, determines a permutation representation $\rho: \mathfrak{S}_{n} \rightarrow \mathrm{GL}\left(\mathbb{C}^{m}\right)$.
(a) For $n=4$ and $C\left(\left(\begin{array}{ll}2 & 1\end{array}\right)(43)\right)$, compute the matrices $\rho((i+1 i))$ for all $1 \leqslant i<n$.
(b) Prove that the representation $\rho: \mathfrak{S}_{4} \rightarrow \mathrm{GL}\left(\mathbb{C}^{3}\right)$ from part (a) is not irreducible.
4. Consider the regular tetrahedron in \mathbb{R}^{3}, centered the origin, defined by the four vertices

$$
\left(1,0,-\frac{1}{\sqrt{2}}\right) \quad\left(-1,0,-\frac{1}{\sqrt{2}}\right), \quad\left(0,1, \frac{1}{\sqrt{2}}\right), \quad\left(0,-1, \frac{1}{\sqrt{2}}\right) .
$$

(a) With the vertices indexed in the given order, compute the matrices corresponding to the adjacent transpositions $(i+1 i)$ for all $1 \leqslant i<4$.
(b) Show that the symmetries of this tetrahedron determine a representation of \mathfrak{S}_{4} via the induced action on the vertices.
(c) Prove that this representation is irreducible.

Hint. Relative to the standard basis for \mathbb{R}^{3}, the reflection in the plane $a x+b y+c z=0$ is given by the matrix

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\frac{2}{a^{2}+b^{2}+c^{2}}\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\left[\begin{array}{lll}
a & b & c
\end{array}\right] .
$$

5. Let U be the submodule of the group algebra $\mathbb{C}\left[\mathfrak{S}_{3}\right]$ generated by $\overrightarrow{\mathbf{u}}_{1}:=1-\left(\begin{array}{ll}2 & 1\end{array}\right)+\left(\begin{array}{ll}3 & 2\end{array}\right)-\left(\begin{array}{lll}3 & 1 & 2\end{array}\right)$.
(a) Show that U is isomorphic to the two-dimensional irreducible subrepresentation of the defining permutation representation of \mathfrak{S}_{3} (also known as the standard representation).
(b) For all $\tau \in \mathfrak{S}_{3}$, let $U_{\tau}:=\left\{\tau \overrightarrow{\mathbf{u}} \tau^{-1} \in \mathbb{C}\left[\mathfrak{S}_{n}\right] \mid \overrightarrow{\mathbf{u}} \in U\right\}$. Prove that $U \oplus U_{(21)}=U \oplus U_{\left(\begin{array}{ll}1\end{array}\right)}$ but $U_{(21)} \neq U_{(31)}$.
