Problem Set #3 Due: Friday, 14 January 2020

1. Fix $n \in \mathbb{N}$. For all $2 \leq k \leq n$, the *Jucys–Murphy element* X_k in $\mathbb{C}[\mathfrak{S}_n]$ is defined to be

$$X_k := (k \ 1) + (k \ 2) + \dots + (k \ k - 1) = \sum_{\ell=1}^{k-1} (k \ \ell).$$

- (a) For all i < j < k and all $\ell < k$, compute the product $(j \ i)(k \ \ell)(j \ i)$.
- (b) Prove that X_n commutes with every element in $\mathbb{C}[\mathfrak{S}_{n-1}]$ (regarded as a subalgebra of $\mathbb{C}[\mathfrak{S}_n]$).
- (c) For all $2 \leq j < k \leq n$, show that $X_j X_k = X_k X_j$.
- 2. For two integer partitions λ and μ , consider the following four binary operations.
 - The sum $\lambda + \mu$ is the entrywise sum; $(\lambda + \mu)_j := \lambda_j + \mu_j$ for all $j \ge 1$.
 - The *amalgam* $\lambda \sqcup \mu$ is the partition whose parts are those of λ and μ arranged in descending order.
 - The *product* $\lambda \mu$ is the entrywise product; $(\lambda \mu)_j := \lambda_j \mu_j$ for all $j \ge 1$.
 - The *coproduct* $\lambda \oplus \mu$ is the partition whose parts are min (λ_j, μ_k) for all *j* at most the length of λ and all *k* at most the length of μ .
 - (a) For $\lambda = (3, 2, 2)$ and $\mu = (3, 2, 1, 1)$, compute the following:

$$\begin{array}{cccc} \lambda + \mu & \lambda \sqcup \mu & \lambda \mu & \lambda \oplus \mu \\ (\lambda + \mu)' & (\lambda \sqcup \mu)' & (\lambda \mu)' & (\lambda \oplus \mu)' \\ \lambda' + \mu' & \lambda' \sqcup \mu' & \lambda' \mu' & \lambda' \oplus \mu' \\ (\lambda' + \mu')' & (\lambda' \sqcup \mu')' & (\lambda' \mu')' & (\lambda' \oplus \mu')' \end{array}$$

- (**b**) Prove that $(\lambda \sqcup \mu)' = \lambda' + \mu'$ and $(\lambda \oplus \mu)' = \lambda' \mu'$.
- **3.** Fix $n \in \mathbb{N}$. Let $\mathcal{P} \subset \mathbb{N}^{n+1}$ be the set of all tuples $v := (v_0, v_1, \dots, v_n)$ satisfying the following properties: (nondecreasing) for all $0 \leq i < n$, we have $v_i \leq v_{i+1}$;

(concave)	for all $0 < i < n$, we have $v_{i-1} + v_{i+1} \le 2v_i$;
(boundary values)	we have $v_0 = 0$ and $v_n = n$.

Consider the map Σ from the set of all partitions of *n* to \mathbb{N}^{n+1} defined by

$$\Sigma(\lambda) := (0, \lambda_1, \lambda_1 + \lambda_2, \dots, \lambda_1 + \lambda_2 + \dots + \lambda_n),$$

and the map $\Delta: \mathcal{P} \to \mathbb{Z}^n$ defined by $\Delta(\boldsymbol{v}) := (v_1 - v_0, v_2 - v_1, \dots, v_n - v_{n-1}).$

- (a) Check that the maps Σ and Δ are bijections between the set of partitions of *n* and the set \mathcal{P} .
- (b) Under these bijections, show that the dominance order on the partitions of *n* corresponds to the componentwise order on \mathcal{P} .
- **4.** For all $n \ge 2$, decompose the defining permutation representation of the symmetric group \mathfrak{S}_n into irreducible representations.

Hint. Show that standard representation is irreducible by proving that any nonempty submodule must be the entire standard representation.

5. Decompose the regular representation of \mathfrak{S}_3 into irreducible representations.

MATH 314 : 2020

