Problem Set \#6

Due: Friday, 27 March 2020

1. (a) Using the Robinson-Schensted-Knuth algorithm, determine the permutation that corresponds the tableaux pair
(b) Using Viennot's construction, to find the tableaux pairs corresponding to the permutations

$$
\sigma:=237916548 \in \mathfrak{S}_{9} \quad \text { and } \quad \tau:=845619732 \in \mathfrak{S}_{9}
$$

2. Consider a permutation $\sigma \in \mathfrak{S}_{n}$ such that $\sigma=\sigma^{-1}$, and let (P, Q) denote the corresponding tableaux pair. A fixed point in the permutation σ is an index i such that $\sigma_{i}=i$.
(a) If the standard tableau P has shape λ, then demonstrate that the number of columns having odd length equals the alternating sum of the parts: $\sum_{i \geqslant 1}(-1)^{i+1} \lambda_{i}$.
(b) For any positive integer i and all $1 \leqslant j \leqslant \lambda_{i}$, let $L_{j}^{(i)}$ denote the shadow lines in the Viennot construction for the permutation σ corresponding to the i-th rows in the tableau P. Prove that the number of shadow lines $L_{j}^{(i)}$ meeting the diagonal line $x=y$ in a northeast corner is equal to the number of shadow lines $L_{j}^{(i+1)}$ meeting the diagonal line $x=y$ is a southwest corner.

Figure 1. A southwest corner (left) and northeast corner (right)

(c) Prove that the number of fixed points in σ is equal to the number of columns having odd length in P.
3. Fix $n \in \mathbb{N}$.
(a) Prove that any permutation of more than n^{2} elements has a monotonic subsequence of length greater than n.
(b) Find a formula for the number of permutations in $\mathfrak{S}_{n^{2}}$ that have no monotonic subsequences of length greater than n.
4. (a) If λ is an integer partition having no hook of length 2 , then prove that there exists $k \in \mathbb{N}$ such that $\lambda=(k, k-1, k-2, \ldots, 2,1)$.
(b) For any integer partition, prove that there exists $k \in \mathbb{N}$ such that the number of odd hook lengths minus the number of even hook lengths equals $\binom{k+1}{2}$.
5. Fix $n \in \mathbb{N}$.
(a) Show that the number of standard tableau of shape $\left(n^{2}\right)$ is the Catalan number $\frac{1}{n+1}\binom{2 n}{n}$.
(b) For all $0 \leqslant k<n$, show that the number of standard tableau of shape $\left(n-k, 1^{k}\right)$ is the binomial coefficient $\binom{n-1}{k}$.

