Problem Set #2

Due: Thursday, 20 September 2012

Students registered in MATH 401 should submit solutions to three of the following problems. Students in MATH 801 should submit solutions to all five.

- **1.** For a positive integer *n*, the **boolean lattice** BL_n is the graph whose vertex set is the set of all subsets of $\{1, 2, ..., n\}$ where two subsets are adjacent if their symmetric difference has precisely one element. Show that the *n*-cube Q_n and the boolean lattice BL_n are isomorphic.
- 2. For positive integers *m* and *n*, the *Kneser graph* $KG_{n,m}$ has vertex set consisting of the *m*-subset of $\{1, ..., n\}$ and two vertices are adjacent if the corresponding subsets are disjoint.
 - (a) Show that $KG_{n,1} \cong K_n$.
 - (b) Show that $KG_{n,2}$ is isomorphic to the complement of line graph $L(K_n)$.
- **3.** The Desargues set system (V, \mathcal{F}) has $V := \{0, 1, \dots, 9\}$ and

Show that the following three graphs are isomorphic:

- the intersection graph of the Desargues set system,
- the line graph of K_5 ,
- the complement of the Petersen graph.
- **4.** (a) Let G be a graph satisfying $e(G) > \binom{v(G)-1}{2}$. Prove that G is connected.
 - (b) For any positive integer *n*, find a disconnected graph *G* such that v(G) = n and $e(G) = \binom{n-1}{2}$.
- 5. (a) Let G be a graph with minimum degree $\delta(G)$. If $\delta(G) > \frac{1}{2}(v(G) 2)$, then show that G is connected.
 - (b) For any positive even number *n*, find a disconnected $\frac{1}{2}(n-2)$ -regular graph *G* such that v(G) = n.

Hint. It suffices to show that every vertex not adjacent to one with minimal degree has a common neighbour.