
Solutions 1

P1.1 Let p be a prime integer and let Fp be a finite field with p elements. Demonstrate that
xp − x is a nonzero polynomial in Fp[x] that vanishes at every point in A1(Fp).

Solution. We divide the solution into three steps.
• For any integer j satisfying 0 < j < p, the binomial coefficient

( p
j
)

is divisible by the prime p.

The binomial coefficient satisfies the equation p! = j! (p− j)!
( p

j
)

so p divides the product
j! (p − j)!

( p
j
)
. As p is prime, it must divide at least one of the three factors: j!, (p − j)!,

or
( p

j
)
. Because 0 < j < p and p is prime, we deduce that p does not divide j! (p − j)!.

Therefore, the prime p divides
( p

j
)
.

• For any two integers a and b, we have (a + b)p ≡ ap + bp mod p.

The binomial theorem asserts that

(a + b)p =
p

∑
j=0

(
p
j

)
aj bp−j .

The first step shows that
( p

j
)
≡ 0 mod p for any integer j satisfying 0 < j < p. It follows

that (a + b)p ≡ ap + bp mod p.

• For any nonnegative integer a, we have ap ≡ a mod p.

We proceed by induction on a. The cases a = 0 and a = 1 are trivial. The second step
and the induction hypothesis give (a + 1)p ≡ ap + 1p ≡ a + 1 mod p.

Since the nonnegative integers contain a complete set of representatives (also known as a
transversal or a system of distinct representatives) for the quotient Fp = Z/⟨p⟩, the third
step implies that ap − a = 0 for any element a in Fp. Hence, the nonzero polynomial xp − x
vanishes at every point in Fp, so we have

xp − x = x(x − 1)(x − 2) · · ·
(
x − (p − 1)

)
∈ Fp[x] . □

Alternative solution using group theory. Since the group (Fp)× of units consists of all the
elements in Fp except for 0, it has order p − 1. By the Lagrange Theorem, the order k of an
element x in (Fp)× divides p − 1, so p − 1 = km for some nonnegative integer m. Hence,
we have xp−1 ≡ xkm ≡ (xk)m ≡ 1m = 1 mod p. In other words, the polynomial xp−1 − 1
vanishes at every nonzero point in Fp. Since x(xp−1 − 1) = xp − x, the nonzero polynomial
xp − x in Fp[x] vanishes at every point of A1(Fp). □

Remark. For more proofs, see
http://en.wikipedia.org/wiki/Proofs_of_Fermat’s_little_theorem.

P1.2 Consider the curve, called a strophoid, with the trigonometric parametrization given by
x = a sin(θ) and y = a tan(θ)

(
1 + sin(θ)

)
where a is a constant and θ is a real parameter.

i. Find the implicit polynomial equation in x and y that describes the strophoid.
ii. Find a rational parametrization of the strophoid.

MATH 413/813 : 2025 page 1 of 5

http://en.wikipedia.org/wiki/Proofs_of_Fermat's_little_theorem
https://creativecommons.org/licenses/by-nc-sa/4.0/


x

y

−a a

Figure 1. Real points on the strophoid

Solution.
i. Substituting sin(θ) = x/a into the expression for y yields

y = a
sin(θ)
cos(θ)

(
1 + sin(θ)

)
= a

x/a
cos(θ)

(
1 +

x
a

)
=

x(x + a)
a cos(θ)

⇒ cos(θ) =
x(x + a)

ay
.

Since cos2(θ) + sin2(θ) = 1, we obtain(
x
a

)2

+

(
x(x + a)

ay

)2

= 1 ⇒ x2y2 + x2(x + a)2 = a2y2

⇒ y2(x2 − a2) + x2(x + a)2 = 0

⇒ (x + a)
(
y2(x − a) + x2(x + a)

)
= 0 .

Since the vertical line x = −a is not part of the stropoid, we conclude that the implicit
equation is y2(x − a) + x2(x + a) = 0.

ii. Using the rational parametrization of the unit circle given by

t 7→
(

1 − t2

1 + t2 ,
2t

1 + t2

)
,

we obtain the following rational parametrization of the strophoid:

x = a sin(θ) = a
2t

1 + t2

y = a tan(θ)
(
1 + sin(θ)

)
= a

(
2t

1 − t2

)(
1 +

2t
1 + t2

)
= a

2t(1 + t)
(1 − t)(1 + t2)

.

Thus, t 7→
(

2at
1 + t2 ,

2at(1 + t)
(1 − t)(1 + t2)

)
is a rational parametrization of the stropoid. □

P1.3 Prove that any nonempty open subset of an irreducible topological space is dense and
irreducible (in the induced topology).
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Solution. Let X be an irreducible topological space and consider a nonempty open subset
U of X. Since U is open and nonempty in X, there exists a proper closed subset Y of X
such that U = X \ Y. Writing U for the closure of U in X, we see that X = U ∪ Y. Since X
is irreducible and Y is a proper subset, it follows that U = X, so U is dense.

Suppose that Y1 and Y2 are two closed subsets of X such that

U = (U ∩ Y1) ∪ (U ∩ Y2) = U ∩ (Y1 ∪ Y2) ;

in other words, U is the union of two subsets each of which is closed in the induced
topology. Since U is the intersection of all closed subsets containing U, it follows that
X = U = Y1 ∪ Y2. Since X is irreducible, we may assume (up to relabelling the Yi) that
X = Y1. Therefore, we conclude that U = U ∩ Y1 and U cannot be expressed as the union
of two proper closed subsets. □

P1.4 Consider the map σ : A3(Q)→A6(Q) defined by σ(x1, x2, x3) := (x2
1, x1x2, x1x3, x2

2, x2x3, x2
3).

Let z1, z2, . . . , z6 denote the corresponding coordinates on A6(Q).
i. Show that the image of the map σ satisfies the equations given by the 2-minors of the

symmetric matrix

Ω :=

z1 z2 z3
z2 z4 z5
z3 z5 z6

 .

ii. Compute the dimension of the rational vector space V in S := Q[z1, z2, . . . , z6] spanned
by these 2-minors.

iii. Show that every homogeneous polynomial of degree 2 in the polynomial ring S
vanishing on the image of σ is contained in V.

Solution.
i. We first observe that

σ−1(Ω) =

 x2
1 x1x2 x1x3

x1x2 x2
2 x2x3

x1x3 x2x3 x2
3

 =

x1
x2
x3

 [
x1 x2 x3

]
.

Since (3 × 3)-matrix σ−1(Ω) is the product of matrices with rank 1, it has rank at most
1. In particular, the 2-minors of σ−1(Ω) all vanish. In other words, the image σ satisfies
the equations given by the 2-minors of the symmetric matrix Ω.

ii. Among the nine 2-minors of Ω, six are distinct, namely

z1z4 − z2
2 , z1z5 − z2z3 , z2z5 − z3z4 , z1z6 − z2

3 , z2z6 − z3z5 , z4z6 − z2
5 .

Since these equations have no monomials in common (and the monomials form a
vector space basis for S), they are linearly independent. Therefore, the rational vector
space V has dimension 6.

iii. The rational vector space S2 of homogeneous quadratic polynomial functions on A6(Q)
has dimension

(6+2−1
2

)
= 21 and the rational vector space R4 of homogeneous quartic
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polynomial functions on A3(Q) has dimension
(3+4−1

4
)
= 15. The map σ induces a

Q-linear map σ♯ : S2 → R4 such that

z2
1 7→ x4

1 z1z2 7→ x3
1x2 z1z3 7→ x3

1x2

z1z4 7→ x2
1x2

2 z1z5 7→ x2
1x2x3 z1z6 7→ x2

1x2
2

z2
2 7→ x2

1x2
2 z2z3 7→ x2

1x2x3 z2z4 7→ x1x3
2

z2z5 7→ x1x2
2x3 z2z6 7→ x1x2x2

3 z2
3 7→ x2

1x2
3

z3z4 7→ x1x2
2x3 z3z5 7→ x1x2x2

3 z3z6 7→ x1x3
3

z2
4 7→ x4

2 z4z5 7→ x3
2x3 z4z6 7→ x2

2x2
3

z2
5 7→ x2

2x2
3 z5z6 7→ x2x3

3 z2
6 7→ x4

3 .

We see that linear map σ♯ is surjective because all of the monomials of degree 4 lie
in the image. The kernel of the linear map σ♯ is the span of all polynomials sent
to the zero function on A3(Q). In other words, it is the collection of homogeneous
quadratic polynomials that vanish on the image of the map σ, so V ⊆ Ker(σ♯). Since
6 = dim(V) ⩽ dim Ker(σ♯) = dim(S2)− dim(R4) = 21 − 15 = 6, we conclude that
V = Ker(σ♯). □

Remark. The dimension of the vector space of homogeneous polynomials having degree d
in n variables is

(n+d−1
d

)
. Since the monomials form a basis, it suffices to count them. Each

monomial in n variables of degree d corresponds to a sequence of d stars and n − 1 vertical
bars separating the stars. For example, we have

x4y3z ↔ ∗ ∗ ∗ ∗ | ∗ ∗ ∗ | ∗ and xz3 ↔ ∗|| ∗ ∗ ∗ .

The binomial coefficient
(n+d−1

d
)

counts the ways to choose d stars from n + d − 1 symbols.

P1.5 Let d be a nonnegative integer.
i. Show that the polynomial

( x
d
)

:= 1
d! x(x − 1) · · · (x − d + 1) in Q[x] takes integer values

when evaluated at any integer.
ii. Show that every integer-valued polynomial in Q[x] of degree at most d can be written

as a unique integer linear combination of the polynomials
( x

d
)
,
( x

d−1
)
, . . . ,

( x
0
)
.

Solution.
i. We proceed by induction on d. When d = 0 or d = 1, the assertion is trivial. Suppose

that
( x

d
)

is an integer-valued polynomial. We have(
x + 1
d + 1

)
−

(
x

d + 1

)
=

(x + 1)(x) · · · (x − d + 1)
(d + 1)!

− x(x − 1) · · · (x − d)
(d + 1)!

=
x(x − 1) · · · (x − d + 1)

(
x + 1 − (x − d)

)
(d + 1)!

=
x(x − 1) · · · (x − d + 1)

d!
=

(
x
d

)
,
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so the difference
(m+1

d+1
)
−

( m
d+1

)
is an integer for any integer m. Since

( 0
d+1

)
= 0, it

follows, via a induction on m, that the polynomial
( x

d+1
)

in Q[x] takes integer values
when evaluated at any integer.

ii. Let f be an integer-valued polynomial in Q[x] of degree at most d. Since
( x

j
)

is a
polynomial of degree j, we see that the list(

x
d

)
,
(

x
d − 1

)
, . . . ,

(
x
0

)
forms a basis for the rational vector space of all polynomials having degree at most d.
Hence, there exists unique rational numbers cd, cd−1, . . . , c0 such that

f = cd

(
x
d

)
+ cd−1

(
x

d − 1

)
+ · · ·+ c0

(
x
0

)
.

It remains to prove that these rational coefficients are integers.
We proceed by induction on d. When d = 0, the polynomial c0

( x
0
)
= c0 is integer-

valued, so the coefficient c0 is an integer. For any positive integer d, the difference

f (x + 1)− f (x) =
d

∑
j=0

cj

(
x + 1

j

)
−

d

∑
j=0

cj

(
x
j

)
=

d

∑
j=1

cj

(
x

j − 1

)
is integer-valued. Hence, the induction hypothesis establishes that the coefficients
cd, cd−1, . . . , c1 are integers. Furthermore, the equation

c0 = f (d)−
d

∑
j=0

cj

(
d
j

)
shows that c0 is also an integer. □
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