Solutions 1

P1.1 Let *p* be a prime integer and let \mathbb{F}_p be a finite field with *p* elements. Demonstrate that $x^p - x$ is a nonzero polynomial in $\mathbb{F}_p[x]$ that vanishes at every point in $\mathbb{A}^1(\mathbb{F}_p)$.

Solution. We divide the solution into three steps.

• For any integer *j* satisfying 0 < j < p, the binomial coefficient $\binom{p}{i}$ is divisible by the prime *p*.

The binomial coefficient satisfies the equation $p! = j! (p-j)! {p \choose j}$ so p divides the product $j! (p-j)! {p \choose j}$. As p is prime, it must divide at least one of the three factors: j!, (p-j)!, or ${p \choose j}$. Because 0 < j < p and p is prime, we deduce that p does not divide j! (p-j)!. Therefore, the prime p divides ${p \choose j}$.

• For any two integers a and b, we have $(a+b)^p \equiv a^p + b^p \mod p$.

The binomial theorem asserts that

$$(a+b)^{p} = \sum_{j=0}^{p} {p \choose j} a^{j} b^{p-j}.$$

The first step shows that $\binom{p}{j} \equiv 0 \mod p$ for any integer *j* satisfying 0 < j < p. It follows that $(a + b)^p \equiv a^p + b^p \mod p$.

• For any nonnegative integer *a*, we have $a^p \equiv a \mod p$.

We proceed by induction on *a*. The cases a = 0 and a = 1 are trivial. The second step and the induction hypothesis give $(a + 1)^p \equiv a^p + 1^p \equiv a + 1 \mod p$.

Since the nonnegative integers contain a complete set of representatives (also known as a transversal or a system of distinct representatives) for the quotient $\mathbb{F}_p = \mathbb{Z}/\langle p \rangle$, the third step implies that $a^p - a = 0$ for any element *a* in \mathbb{F}_p . Hence, the nonzero polynomial $x^p - x$ vanishes at every point in \mathbb{F}_p , so we have

$$x^p - x = x(x-1)(x-2)\cdots(x-(p-1)) \in \mathbb{F}_p[x].$$

Alternative solution using group theory. Since the group $(\mathbb{F}_p)^{\times}$ of units consists of all the elements in \mathbb{F}_p except for 0, it has order p - 1. By the Lagrange Theorem, the order k of an element x in $(\mathbb{F}_p)^{\times}$ divides p - 1, so p - 1 = km for some nonnegative integer m. Hence, we have $x^{p-1} \equiv x^{km} \equiv (x^k)^m \equiv 1^m = 1 \mod p$. In other words, the polynomial $x^{p-1} - 1$ vanishes at every nonzero point in \mathbb{F}_p . Since $x(x^{p-1} - 1) = x^p - x$, the nonzero polynomial $x^p - x$ in $\mathbb{F}_p[x]$ vanishes at every point of $\mathbb{A}^1(\mathbb{F}_p)$.

Remark. For more proofs, see

http://en.wikipedia.org/wiki/Proofs_of_Fermat's_little_theorem.

- **P1.2** Consider the curve, called a *strophoid*, with the trigonometric parametrization given by $x = a \sin(\theta)$ and $y = a \tan(\theta) (1 + \sin(\theta))$ where *a* is a constant and θ is a real parameter.
 - i. Find the implicit polynomial equation in x and y that describes the strophoid.
 - ii. Find a rational parametrization of the strophoid.

FIGURE 1. Real points on the strophoid

Solution.

i. Substituting $sin(\theta) = x/a$ into the expression for *y* yields

$$y = a \frac{\sin(\theta)}{\cos(\theta)} \left(1 + \sin(\theta) \right) = a \frac{x/a}{\cos(\theta)} \left(1 + \frac{x}{a} \right) = \frac{x(x+a)}{a\cos(\theta)} \qquad \Rightarrow \qquad \cos(\theta) = \frac{x(x+a)}{ay}.$$

Since $\cos^2(\theta) + \sin^2(\theta) = 1$ we obtain

Since $\cos^2(\theta) + \sin^2(\theta) = 1$, we obtain

$$\left(\frac{x}{a}\right)^2 + \left(\frac{x(x+a)}{ay}\right)^2 = 1 \qquad \Rightarrow \qquad x^2y^2 + x^2(x+a)^2 = a^2y^2$$
$$\Rightarrow \qquad y^2(x^2 - a^2) + x^2(x+a)^2 = 0$$
$$\Rightarrow \qquad (x+a)\left(y^2(x-a) + x^2(x+a)\right) = 0.$$

Since the vertical line x = -a is not part of the stropoid, we conclude that the implicit equation is $y^{2}(x - a) + x^{2}(x + a) = 0$.

ii. Using the rational parametrization of the unit circle given by

$$t\mapsto \left(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2}\right)\,,$$

we obtain the following rational parametrization of the strophoid:

$$x = a\sin(\theta) = a\frac{2t}{1+t^2}$$

$$y = a\tan(\theta)\left(1+\sin(\theta)\right) = a\left(\frac{2t}{1-t^2}\right)\left(1+\frac{2t}{1+t^2}\right) = a\frac{2t(1+t)}{(1-t)(1+t^2)}.$$

Thus, $t \mapsto \left(\frac{2at}{1+t^2}, \frac{2at(1+t)}{(1-t)(1+t^2)}\right)$ is a rational parametrization of the stropoid.

P1.3 Prove that any nonempty open subset of an irreducible topological space is dense and irreducible (in the induced topology).

Solution. Let *X* be an irreducible topological space and consider a nonempty open subset *U* of *X*. Since *U* is open and nonempty in *X*, there exists a proper closed subset *Y* of *X* such that $U = X \setminus Y$. Writing \overline{U} for the closure of *U* in *X*, we see that $X = \overline{U} \cup Y$. Since *X* is irreducible and *Y* is a proper subset, it follows that $\overline{U} = X$, so *U* is dense.

Suppose that Y_1 and Y_2 are two closed subsets of X such that

$$U = (U \cap Y_1) \cup (U \cap Y_2) = U \cap (Y_1 \cup Y_2);$$

in other words, U is the union of two subsets each of which is closed in the induced topology. Since \overline{U} is the intersection of all closed subsets containing U, it follows that $X = \overline{U} = Y_1 \cup Y_2$. Since X is irreducible, we may assume (up to relabelling the Y_i) that $X = Y_1$. Therefore, we conclude that $U = U \cap Y_1$ and U cannot be expressed as the union of two proper closed subsets.

- **P1.4** Consider the map $\sigma: \mathbb{A}^3(\mathbb{Q}) \to \mathbb{A}^6(\mathbb{Q})$ defined by $\sigma(x_1, x_2, x_3) := (x_1^2, x_1x_2, x_1x_3, x_2^2, x_2x_3, x_3^2)$. Let z_1, z_2, \ldots, z_6 denote the corresponding coordinates on $\mathbb{A}^6(\mathbb{Q})$.
 - i. Show that the image of the map σ satisfies the equations given by the 2-minors of the symmetric matrix

$$\Omega := \begin{bmatrix} z_1 & z_2 & z_3 \\ z_2 & z_4 & z_5 \\ z_3 & z_5 & z_6 \end{bmatrix}.$$

- **ii.** Compute the dimension of the rational vector space *V* in $S := \mathbb{Q}[z_1, z_2, ..., z_6]$ spanned by these 2-minors.
- iii. Show that every homogeneous polynomial of degree 2 in the polynomial ring *S* vanishing on the image of σ is contained in *V*.

Solution.

i. We first observe that

$$\sigma^{-1}(\Omega) = \begin{bmatrix} x_1^2 & x_1 x_2 & x_1 x_3 \\ x_1 x_2 & x_2^2 & x_2 x_3 \\ x_1 x_3 & x_2 x_3 & x_3^2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}.$$

Since (3×3) -matrix $\sigma^{-1}(\Omega)$ is the product of matrices with rank 1, it has rank at most 1. In particular, the 2-minors of $\sigma^{-1}(\Omega)$ all vanish. In other words, the image σ satisfies the equations given by the 2-minors of the symmetric matrix Ω .

ii. Among the nine 2-minors of Ω , six are distinct, namely

$$z_1 z_4 - z_2^2$$
, $z_1 z_5 - z_2 z_3$, $z_2 z_5 - z_3 z_4$, $z_1 z_6 - z_3^2$, $z_2 z_6 - z_3 z_5$, $z_4 z_6 - z_5^2$

Since these equations have no monomials in common (and the monomials form a vector space basis for S), they are linearly independent. Therefore, the rational vector space V has dimension 6.

iii. The rational vector space S_2 of homogeneous quadratic polynomial functions on $\mathbb{A}^6(\mathbb{Q})$ has dimension $\binom{6+2-1}{2} = 21$ and the rational vector space R_4 of homogeneous quartic

polynomial functions on $\mathbb{A}^3(\mathbb{Q})$ has dimension $\binom{3+4-1}{4} = 15$. The map σ induces a \mathbb{Q} -linear map $\sigma^{\sharp} \colon S_2 \to R_4$ such that

$z_1^2 \mapsto x_1^4$	$z_1 z_2 \mapsto x_1^3 x_2$	$z_1 z_3 \mapsto x_1^3 x_2$
$z_1 z_4 \mapsto x_1^2 x_2^2$	$z_1 z_5 \mapsto x_1^2 x_2 x_3$	$z_1 z_6 \mapsto x_1^2 x_2^2$
$z_2^2 \mapsto x_1^2 x_2^2$	$z_2 z_3 \mapsto x_1^2 x_2 x_3$	$z_2 z_4 \mapsto x_1 x_2^3$
$z_2 z_5 \mapsto x_1 x_2^2 x_3$	$z_2 z_6 \mapsto x_1 x_2 x_3^2$	$z_3^2 \mapsto x_1^2 x_3^2$
$z_3 z_4 \mapsto x_1 x_2^2 x_3$	$z_3 z_5 \mapsto x_1 x_2 x_3^2$	$z_3 z_6 \mapsto x_1 x_3^3$
$z_4^2 \mapsto x_2^4$	$z_4 z_5 \mapsto x_2^3 x_3$	$z_4 z_6 \mapsto x_2^2 x_3^2$
$z_5^2 \mapsto x_2^2 x_3^2$	$z_5 z_6 \mapsto x_2 x_3^3$	$z_6^2 \mapsto x_3^4$.

We see that linear map σ^{\sharp} is surjective because all of the monomials of degree 4 lie in the image. The kernel of the linear map σ^{\sharp} is the span of all polynomials sent to the zero function on $\mathbb{A}^3(\mathbb{Q})$. In other words, it is the collection of homogeneous quadratic polynomials that vanish on the image of the map σ , so $V \subseteq \text{Ker}(\sigma^{\sharp})$. Since $6 = \dim(V) \leq \dim \text{Ker}(\sigma^{\sharp}) = \dim(S_2) - \dim(R_4) = 21 - 15 = 6$, we conclude that $V = \text{Ker}(\sigma^{\sharp})$.

Remark. The dimension of the vector space of homogeneous polynomials having degree d in n variables is $\binom{n+d-1}{d}$. Since the monomials form a basis, it suffices to count them. Each monomial in n variables of degree d corresponds to a sequence of d stars and n - 1 vertical bars separating the stars. For example, we have

$$x^4y^3z \leftrightarrow **** | *** | *$$
 and $xz^3 \leftrightarrow *||***$.

The binomial coefficient $\binom{n+d-1}{d}$ counts the ways to choose *d* stars from n + d - 1 symbols.

P1.5 Let *d* be a nonnegative integer.

- **i.** Show that the polynomial $\binom{x}{d} := \frac{1}{d!}x(x-1)\cdots(x-d+1)$ in $\mathbb{Q}[x]$ takes integer values when evaluated at any integer.
- **ii.** Show that every integer-valued polynomial in $\mathbb{Q}[x]$ of degree at most *d* can be written as a unique integer linear combination of the polynomials $\binom{x}{d}$, $\binom{x}{d-1}$, ..., $\binom{x}{0}$.

Solution.

i. We proceed by induction on *d*. When d = 0 or d = 1, the assertion is trivial. Suppose that $\begin{pmatrix} x \\ d \end{pmatrix}$ is an integer-valued polynomial. We have

$$\binom{x+1}{d+1} - \binom{x}{d+1} = \frac{(x+1)(x)\cdots(x-d+1)}{(d+1)!} - \frac{x(x-1)\cdots(x-d)}{(d+1)!}$$
$$= \frac{x(x-1)\cdots(x-d+1)(x+1-(x-d))}{(d+1)!}$$
$$= \frac{x(x-1)\cdots(x-d+1)}{d!} = \binom{x}{d},$$

so the difference $\binom{m+1}{d+1} - \binom{m}{d+1}$ is an integer for any integer *m*. Since $\binom{0}{d+1} = 0$, it follows, via a induction on *m*, that the polynomial $\binom{x}{d+1}$ in $\mathbb{Q}[x]$ takes integer values when evaluated at any integer.

ii. Let *f* be an integer-valued polynomial in $\mathbb{Q}[x]$ of degree at most *d*. Since $\binom{x}{j}$ is a polynomial of degree *j*, we see that the list

$$\binom{x}{d}, \binom{x}{d-1}, \dots, \binom{x}{0}$$

forms a basis for the rational vector space of all polynomials having degree at most *d*. Hence, there exists unique rational numbers $c_d, c_{d-1}, \ldots, c_0$ such that

$$f = c_d \begin{pmatrix} x \\ d \end{pmatrix} + c_{d-1} \begin{pmatrix} x \\ d-1 \end{pmatrix} + \dots + c_0 \begin{pmatrix} x \\ 0 \end{pmatrix}.$$

It remains to prove that these rational coefficients are integers.

We proceed by induction on *d*. When d = 0, the polynomial $c_0 \begin{pmatrix} x \\ 0 \end{pmatrix} = c_0$ is integervalued, so the coefficient c_0 is an integer. For any positive integer *d*, the difference

$$f(x+1) - f(x) = \sum_{j=0}^{d} c_j {\binom{x+1}{j}} - \sum_{j=0}^{d} c_j {\binom{x}{j}} = \sum_{j=1}^{d} c_j {\binom{x}{j-1}}$$

is integer-valued. Hence, the induction hypothesis establishes that the coefficients $c_d, c_{d-1}, \ldots, c_1$ are integers. Furthermore, the equation

$$c_0 = f(d) - \sum_{j=0}^d c_j \begin{pmatrix} d\\ j \end{pmatrix}$$

shows that c_0 is also an integer.

