Solutions 2

- **P2.1.** Consider the monomial ideals $I := \langle x^{u_1}, x^{u_2}, \dots, x^{u_\ell} \rangle$ and $J := \langle x^{v_1}, x^{v_2}, \dots, x^{v_m} \rangle$ in the polynomial ring $S := \mathbb{K}[x_1, x_2, \dots, x_n]$.
 - **i.** For any monomial x^w in S, prove that the ideal $(J: x^w) := \{ f \in S \mid f x^w \in J \}$ is generated by the monomials $x^{v_j} / \gcd(x^{v_j}, x^w)$ for all $1 \le j \le m$.
 - **ii.** Prove that intersection $J \cap I$ is generated by monomials $lcm(x^{v_j}, x^{u_i})$ for all $1 \le j \le m$ and all $1 \le i \le \ell$.

Solution.

i. Since the monomial $x^w x^{v_j} / \gcd(x^{v_j}, x^w)$ is clearly divisible by x^{v_j} , we have

$$\left\langle \frac{oldsymbol{x^{v_j}}}{\gcd(oldsymbol{x^{v_j}},oldsymbol{x^w})} \;\middle|\; 1 \leqslant j \leqslant m \right
angle \;\subseteq (J:oldsymbol{x^w})$$

On the other hand, given $f \in (J : x^w)$, we have $f x^w \in J$ and each term in the product $f x^w$ is a multiply of x^{v_j} for some $1 \le j \le m$. Unique factorization implies that each term in f is a multiply of $x^{v_j} / \gcd(x^{v_j}, x^w)$ for some $1 \le j \le m$. Thus, we deduce that

$$\left\langle \frac{oldsymbol{x^{oldsymbol{v_j}}}}{\gcd(oldsymbol{x^{oldsymbol{v_j}}},oldsymbol{x^{oldsymbol{w}}})} \;\middle|\; 1\leqslant j\leqslant m
ight
angle\supseteq (J:oldsymbol{x^{oldsymbol{w}}})\,.$$

- ii. Since the monomial $\operatorname{lcm}(\boldsymbol{x}^{v_j}, \boldsymbol{x}^{u_i})$ is divisible by both \boldsymbol{x}^{v_j} and \boldsymbol{x}^{u_i} , it lies in $J \cap I$. Conversely, suppose $f \in J \cap I$. Because $f \in J$, each term in f is a multiply of \boldsymbol{x}^{v_j} for some $1 \leqslant j \leqslant m$. Similarly, we have $f \in I$ and each term in f is a multiply of \boldsymbol{x}^{u_i} for some $1 \leqslant i \leqslant \ell$. Hence, the definition of the least common multiple implies that each term in f is a multiply of $\operatorname{lcm}(\boldsymbol{x}^{v_j}, \boldsymbol{x}^{u_i})$ for some $1 \leqslant j \leqslant m$ and some $1 \leqslant i \leqslant \ell$. It follows that $\langle \operatorname{lcm}(\boldsymbol{x}^{v_j}, \boldsymbol{x}^{u_i}) \mid 1 \leqslant j \leqslant m, 1 \leqslant i \leqslant l \rangle = J \cap I$.
- **P2.2.** Demonstrate that the following properties uniquely determine the monomial orders $>_{\text{lex}}$ and $>_{\text{grevlex}}$ among all monomial orders > on the polynomial ring $S := \mathbb{K}[x_1, x_2, \dots, x_n]$ satisfying $x_1 > x_2 > \dots > x_n$.
 - **i.** For any polynomial f in S such that $LT_{lex}(f) \in \mathbb{K}[x_i, x_{i+1}, \dots, x_n]$ for some $1 \le i \le n$, we have $f \in \mathbb{K}[x_i, x_{i+1}, \dots, x_n]$.
 - ii. The monomial order $>_{\text{grevlex}}$ refines the partial order given by total degree and, for any homogeneous $f \in S$ such that $\text{LT}_{\text{grevlex}}(f) \in \langle x_i, x_{i+1}, \dots, x_n \rangle$ for some $1 \leqslant i \leqslant n$, we have $f \in \langle x_i, x_{i+1}, \dots, x_n \rangle$.

Solution.

i. By definition, we have $x^u>_{\text{lex}} x^v$ if and only if there is an index $i \in \{1, 2, ..., n\}$ such that $u_1=v_1, u_2=v_2, ..., u_{i-1}=v_{i-1}$, and $u_i>v_i$. Set $x^u:=\text{LM}_{\text{lex}}(f)$ and let x^v be any other monomial appearing in a polynomial f. The relation $x^u\in \mathbb{K}[x_i,x_{i+1},...,x_n]$ implies that $u_1=\cdots=u_{i-1}=0$. Since $x^u>_{\text{lex}} x^v$, it follows that $v_1=\cdots=v_{i-1}=0$ and $x^v\in \mathbb{K}[x_i,x_{i+1},...,x_n]$.

Conversely, suppose that > is a monomial order on S such that the relation $LT_{>}(f) \in \mathbb{K}[x_i, x_{i+1}, ..., x_n]$ for some $1 \le i \le n$ implies that $f \in \mathbb{K}[x_i, x_{i+1}, ..., x_n]$.

Consider monomials x^u and x^v in S such that $x^u > x^v$. By setting $x^w := \gcd(x^u, x^v)$, we have $x^u = x^w x^{u'}$ and $x^v = x^w x^{v'}$ where $\min(u'_j, v'_j) = 0$ for all $1 \le j \le n$. Since > is a monomial order, it follows that $x^{u'} > x^{v'}$. Let i be the largest integer such that $u'_1 = u'_2 = \cdots = u'_{i-1} = 0$. If $f = x^{u'} - x^{v'}$, then the hypothesis on > implies that $v'_1 = v'_2 = \cdots = v'_{i-1} = 0$. Our choice of the index i and the equation $\min(u'_i, v'_i) = 0$ imply that $u'_i > 0 = v'_i$ whence $x^u >_{\text{lex}} x^v$. Since x^u and x^v are arbitrary monomials, we conclude that > equals $>_{\text{lex}}$.

ii. By definition, we have $x^u >_{\text{grevlex}} x^v$ if and only if either $\deg(x^u) > \deg(x^v)$ or $\deg(x^u) = \deg(x^v)$ and there exists an index $i \in \{1, 2, \ldots, n\}$ such that $u_n = v_n$, $u_{n-1} = v_{n-1}, \ldots, u_{i+1} = v_{i+1}$, and $u_i < v_i$. Set $x^u := \operatorname{LM}_{\operatorname{grevlex}}(f)$ and let x^v be any other monomial of the same total degree appearing in a polynomial f. The relation $x^u \in \langle x_i, x_{i+1}, \ldots, x_n \rangle$ implies that $u_i + u_{i+1} + \cdots + u_n > 0$. Since $x^u >_{\operatorname{grevlex}} x^v$, we have $v_i + v_{i+1} + \cdots + v_n \geqslant u_i + u_{i+1} + \cdots + u_n > 0$ and $x^v \in \langle x_i, x_{i+1}, \ldots, x_n \rangle$.

Conversely, suppose that > is a monomial order on S which refines total degree and, for any homogeneous polynomial f in S, the relation $\operatorname{LT}_>(f) \in \langle x_i, x_{i+1}, \ldots, x_n \rangle$ implies that $f \in \langle x_i, x_{i+1}, \ldots, x_n \rangle$. Consider monomials x^u and x^v in the ring S such that $x^u > x^v$ and $\deg(x^u) = \deg(x^v)$. Setting $x^w := \gcd(x^u, x^v)$, we have $x^u = x^w x^{u'}$ and $x^v = x^w x^{v'}$ where $\min(u'_i, v'_j) = 0$ for all $1 \leq j \leq n$. As > is a monomial order, we see that $x^{u'} > x^{v'}$. Let i be the smallest integer such that $u'_n = u'_{n-1} = \cdots = u'_{i+1} = 0$. If $f = x^{u'} - x^{v'}$, then the hypothesis on > implies that $v'_1 + v'_2 + \cdots + v'_i > 0$. Our choice of the index i and the equation $\min(u'_i, v'_i) = 0$ imply that $u'_i > 0 = v'_i$ whence $x^u >_{\text{grevlex}} x^v$. Since x^u and x^v are arbitrary monomials, we conclude that > equals $>_{\text{grevlex}}$.

P2.3. Let **M** be an $(m \times n)$ -matrix with nonnegative real entries and let r_1, r_2, \ldots, r_m denote the rows of **M**. Assume that $Ker(\mathbf{M}) \cap \mathbb{Z}^n = \{0\}$. Define a binary relation $>_{\mathbf{M}}$ on the monomials in the polynomial ring $S := \mathbb{K}[x_1, x_2, \ldots, x_n]$ as follows:

 $x^u >_{\mathbf{M}} x^v$ if there is an positive integer i (at most m) such that $u \cdot r_i > v \cdot r_i$ and $u \cdot r_j = v \cdot r_j$ for all $1 \le j \le i - 1$.

i. Show that $>_{\mathbf{M}}$ is a monomial order on the polynomial ring S.

ii. When
$$\mathbf{M} := \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, show that $>_{\mathbf{M}}$ equals $>_{\text{grevlex}}$ on $\mathbb{K}[x, y, z]$.

iii. For the $(n \times n)$ -identity matrix **I**, show that $>_{lex}$ equals $>_{\mathbf{I}}$.

Solution.

i. We check the three defining properties of a monomial order. (total order) Suppose that u and v are distinct vectors in \mathbb{N}^n . Since we know that $\operatorname{Ker}(\mathbf{M}) \cap \mathbb{Z}^n = \{0\}$, there exists a positive integer i such that $(u - v) \cdot r_j = 0$ for all $1 \le j \le i - 1$, and $(u - v) \cdot r_i \ne 0$. When $(u - v) \cdot r_i > 0$, we have $x^u >_{\mathbf{M}} x^v$

(multiplicative) Suppose that $x^u >_M x^v$. By definition, there exists a positive integer i such that $u \cdot r_i = v \cdot r_j$ for all $1 \le j \le i-1$ and $u \cdot r_i > v \cdot r_i$. Since $x^w x^u = x^{w+u}$ and $x^w x^v = x^{w+v}$, it follows that $(w+u) \cdot r_j = (w+v) \cdot r_j$ for all $1 \le j \le i-1$ and $(w+u) \cdot r_i > (w+v) \cdot r_i$ which implies that $x^w x^u >_M x^w x^u$.

(artinian) Let e_1, e_2, \ldots, e_n be the standard basis of \mathbb{Z}^n , so $x_j = x^{e_j}$ for all $1 \le j \le n$. Since we have $\text{Ker}(\mathbf{M}) \cap \mathbb{Z}^n = \{0\}$, there exists a positive integer i (for each e_k) such that $e_k \cdot r_j = 0$ for all $1 \le j \le i - 1$ and $e_k \cdot r_j \ne 0$. Because \mathbf{M} has nonnegative entries, we have $e_k \cdot r_i > 0$. Therefore, we see that $x_k >_{\mathbf{M}} 1$ for all $1 \le k \le n$.

ii. We have

$$x^{u_1}y^{u_2}z^{u_3} >_{\mathbf{M}} x^{v_1}y^{v_2}z^{v_3} \iff \begin{cases} u_1 + u_2 + u_3 &= v_1 + v_2 + v_3 \\ u_1 + u_2 + u_3 &= v_1 + v_2 + v_3 \\ u_1 + u_2 &= v_1 + v_2 + v_3 \end{cases}$$

$$cor \begin{cases} u_1 + u_2 + u_3 &= v_1 + v_2 + v_3 \\ u_1 + u_2 &= v_1 + v_2 \\ u_1 &> v_1 \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 + u_2 + u_3 &= v_1 + v_2 + v_3 \\ u_1 + u_2 + u_3 &= v_1 + v_2 + v_3 \\ u_3 &< v_3 \\ u_1 + u_2 + u_3 &= v_1 + v_2 + v_3 \\ u_3 &= v_3 \\ u_2 &< v_2 \end{cases}$$

$$\Leftrightarrow x^{u_1}y^{u_2}z^{u_3} >_{\text{grevlex}} x^{v_1}y^{v_2}z^{v_3}.$$

iii. We have

$$x^u >_{\mathbf{I}} x^v \Leftrightarrow \text{there exist } i \text{ such that } u_j = v_j \text{ for all } 1 \leqslant j \leqslant i-1 \text{ and } u_i > v_i$$

$$\Leftrightarrow x^u >_{\text{lex}} x^v.$$

- **P2.4.** Let \mathbb{F}_2 be a finite field with 2 elements and consider the ideal I in $\mathbb{F}_2[x,y,z]$ consisting of all polynomials that vanish at every point in $\mathbb{A}^3(\mathbb{F}_2)$.
 - **i.** Show that $\langle x^2 x, y^2 y, z^2 z \rangle \subseteq I$.
 - ii. For any coefficients a_0, a_1, \ldots, a_7 in \mathbb{F}_2 , show that the polynomial

$$f := a_0 xyz + a_1 xy + a_2 xz + a_3 yz + a_4 x + a_5 y + a_6 z + a_7$$

belongs to the ideal *I* if and only if we have $a_0 = a_1 = \cdots = a_7 = 0$.

iii. Show that $I = \langle x^2 - x, y^2 - y, z^2 - z \rangle$.

Solution.

i. Since the univariate polynomial $t^2 - t = t(t - 1)$ has both 0 and 1 as roots for any $t \in \{x, y, z\}$, it follows that $\langle x^2 - x, y^2 - y, z^2 - z \rangle \subseteq I$.

- ii. When $a_0 = a_1 = \cdots = a_7 = 0$, the polynomial f is the zero polynomial which vanishes at every point. Now, suppose that f vanishes at every point in $\mathbb{A}^3(\mathbb{F}_2)$. It follows that $f(0,0,0) = a_7 = 0$, $f(1,0,0) = a_4 = 0$, $f(0,1,0) = a_5 = 0$, and $f(0,0,1) = a_6 = 0$. We deduce that $f(1,1,0) = a_1 = 0$, $f(1,0,1) = a_2 = 0$, and $f(0,1,1) = a_3 = 0$. Finally, we have $f(1,1,1) = a_0 = 0$.
- iii. Fix a monomial order > on $\mathbb{F}_2[x,y,z]$ and consider a polynomial g in I. The division algorithm implies that there exists polynomials $h_1,h_2,h_3 \in \mathbb{F}_2[x,y,z]$ and scalars $a_0,a_1,\ldots,a_7 \in \mathbb{F}_2$ such that
- $g = h_1(x^2 x) + h_2(y^2 y) + h_3(z^2 z) + a_0xyz + a_1xy + a_2xz + a_3yz + a_4x + a_5y + a_6z + a_7$ Since part **i** yields $g - h_1(x^2 - x) - h_2(y^2 - y) - h_3(z^2 - z) \in I$, part **ii** establishes that $a_0 = a_1 = \cdots = a_7 = 0$. We conclude that $g \in \langle x^2 - x, y^2 - y, z^2 - z \rangle$ and $I = \langle x^2 - x, y^2 - y, z^2 - z \rangle$.
- **P2.5.** A ring R satisfies the *artinian* if any descending sequence of ideals in R stabilizes. In other words, for any descending sequence $I_0 \supseteq I_1 \supseteq I_2 \supseteq \cdots$ of ideals in R, there exists a nonnegative integer m such that $I_m = I_{m+1} = I_{m+2} = \cdots$.
 - **i.** For any positive integer n, show that the quotient rings $\mathbb{Z}/\langle n \rangle$ and $\mathbb{K}[x]/\langle x^n \rangle$ are artinian.
 - ii. Show that rings \mathbb{Z} and $\mathbb{K}[x]$ are not artinian.
 - iii. Show that every prime ideal in an artinian ring is maximal.

Solution.

- i. Since $\mathbb{Z}/\langle n \rangle$ has only n distinct elements, every descending chain of ideals can have at most n distinct ideals, so must stabilize.
 - Regarding the quotient $\mathbb{K}[x]/\langle x^n\rangle$ as \mathbb{K} -vector space, the monomials $1, x, \ldots, x^{n-1}$ form a basis, so $\dim_{\mathbb{K}} \mathbb{K}[x]/\langle x^n\rangle = n$. Moreover, every ideal in $\mathbb{K}[x]/\langle x^n\rangle$ is also a \mathbb{K} -vector subspace. It follows that every descending chain of ideals can have at most n+1 distinct ideals.
- **ii.** Since $\langle 2 \rangle \supset \langle 2^2 \rangle \supset \langle 2^3 \rangle \supset \cdots$ and $\langle x \rangle \supset \langle x^2 \rangle \supset \langle x^3 \rangle \supset \cdots$ are infinite descending chains of distinct ideals in $\mathbb Z$ and $\mathbb K[x]$ respectively, neither ring is artinian.
- iii. Let I be a prime ideal in an artinian ring R. Since I is prime, the quotient ring R/I is a domain. A descending chain of ideals in the quotient ring R/I pulls back to a descending chain of ideals in R. Since R is artinian, this the chain in R stabilizes which implies that the chain in R/I also stabilizes. In other words, the quotient ring R/I is also artinian.
 - Let f be a nonzero element in the quotient ring R/I. Since R/I is artinian, it follows that $\langle f^m \rangle = \langle f^{m+1} \rangle$ for some positive integer m, so $f^m = g f^{m+1}$ for some $g \in R/I$. Since R/I is a domain and $f \neq 0$, we may cancel f^m from both sides of this equation to obtain $g f = 1_R$. It follows that f is a unit. Therefore, R/I is a field and I is a maximal ideal.