
Solutions 2

P2.1. Consider the monomial ideals I := ⟨xu1 ,xu2 , . . . ,xuℓ⟩ and J := ⟨xv1 ,xv2 , . . . ,xvm⟩ in the
polynomial ring S := K[x1, x2, . . . , xn].

i. For any monomial xw in S, prove that the ideal (J : xw) :=
{

f ∈ S
∣∣ f xw ∈ J

}
is

generated by the monomials xvj / gcd(xvj ,xw) for all 1 ⩽ j ⩽ m.
ii. Prove that intersection J ∩ I is generated by monomials lcm(xvj ,xui) for all 1 ⩽ j ⩽ m

and all 1 ⩽ i ⩽ ℓ.

Solution.
i. Since the monomial xw xvj / gcd(xvj , xw) is clearly divisible by xvj , we have〈

xvj

gcd(xvj ,xw)

∣∣∣∣∣ 1 ⩽ j ⩽ m

〉
⊆ (J : xw)

On the other hand, given f ∈ (J : xw), we have f xw ∈ J and each term in the product
f xw is a multiply of xvj for some 1 ⩽ j ⩽ m. Unique factorization implies that each
term in f is a multiply of xvj / gcd(xvj ,xw) for some 1 ⩽ j ⩽ m. Thus, we deduce that〈

xvj

gcd(xvj ,xw)

∣∣∣∣∣ 1 ⩽ j ⩽ m

〉
⊇ (J : xw) .

ii. Since the monomial lcm(xvj ,xui) is divisible by both xvj and xui , it lies in J ∩ I.
Conversely, suppose f ∈ J ∩ I. Because f ∈ J, each term in f is a multiply of xvj for
some 1 ⩽ j ⩽ m. Similarly, we have f ∈ I and each term in f is a multiply of xui for
some 1 ⩽ i ⩽ ℓ. Hence, the definition of the least common multiple implies that each
term in f is a multiply of lcm(xvj ,xui) for some 1 ⩽ j ⩽ m and some 1 ⩽ i ⩽ ℓ. It
follows that

〈
lcm(xvj ,xui)

∣∣ 1 ⩽ j ⩽ m, 1 ⩽ i ⩽ l
〉
= J ∩ I. □

P2.2. Demonstrate that the following properties uniquely determine the monomial orders >lex
and >grevlex among all monomial orders > on the polynomial ring S := K[x1, x2, . . . , xn]
satisfying x1 > x2 > · · · > xn.

i. For any polynomial f in S such that LTlex( f ) ∈ K[xi, xi+1, . . . , xn] for some 1 ⩽ i ⩽ n,
we have f ∈ K[xi, xi+1, . . . , xn].

ii. The monomial order >grevlex refines the partial order given by total degree and, for
any homogeneous f ∈ S such that LTgrevlex( f ) ∈ ⟨xi, xi+1, . . . , xn⟩ for some 1 ⩽ i ⩽ n,
we have f ∈ ⟨xi, xi+1, . . . , xn⟩.

Solution.
i. By definition, we have xu >lex xv if and only if there is an index i ∈ {1, 2, . . . , n} such

that u1 = v1, u2 = v2, . . . , ui−1 = vi−1, and ui > vi. Set xu := LMlex( f ) and let xv be
any other monomial appearing in a polynomial f . The relation xu ∈ K[xi, xi+1, . . . , xn]
implies that u1 = · · · = ui−1 = 0. Since xu >lex xv, it follows that v1 = · · · = vi−1 = 0
and xv ∈ K[xi, xi+1, . . . , xn].

Conversely, suppose that > is a monomial order on S such that the relation
LT>( f ) ∈ K[xi, xi+1, . . . , xn] for some 1 ⩽ i ⩽ n implies that f ∈ K[xi, xi+1, . . . , xn].
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Consider monomials xu and xv in S such that xu > xv. By setting xw := gcd(xu,xv),
we have xu = xw xu′

and xv = xw xv′ where min(u′
j, v′j) = 0 for all 1 ⩽ j ⩽ n. Since

> is a monomial order, it follows that xu′
> xv′ . Let i be the largest integer such that

u′
1 = u′

2 = · · · = u′
i−1 = 0. If f = xu′ − xv′ , then the hypothesis on > implies that

v′1 = v′2 = · · · = v′i−1 = 0. Our choice of the index i and the equation min(u′
i, v′i) = 0

imply that u′
i > 0 = v′i whence xu >lex xv. Since xu and xv are arbitrary monomials,

we conclude that > equals >lex.

ii. By definition, we have xu >grevlex xv if and only if either deg(xu) > deg(xv) or
deg(xu) = deg(xv) and there exists an index i ∈ {1, 2, . . . , n} such that un = vn,
un−1 = vn−1, . . . , ui+1 = vi+1, and ui < vi. Set xu := LMgrevlex( f ) and let xv be any
other monomial of the same total degree appearing in a polynomial f . The relation
xu ∈ ⟨xi, xi+1, . . . , xn⟩ implies that ui + ui+1 + · · ·+ un > 0. Since xu >grevlex xv, we
have vi + vi+1 + · · ·+ vn ⩾ ui + ui+1 + · · ·+ un > 0 and xv ∈ ⟨xi, xi+1, . . . , xn⟩.

Conversely, suppose that > is a monomial order on S which refines total degree
and, for any homogeneous polynomial f in S, the relation LT>( f ) ∈ ⟨xi, xi+1, . . . , xn⟩
implies that f ∈ ⟨xi, xi+1, . . . , xn⟩. Consider monomials xu and xv in the ring S
such that xu > xv and deg(xu) = deg(xv). Setting xw := gcd(xu,xv), we have
xu = xw xu′

and xv = xw xv′ where min(u′
j, v′j) = 0 for all 1 ⩽ j ⩽ n. As > is

a monomial order, we see that xu′
> xv′ . Let i be the smallest integer such that

u′
n = u′

n−1 = · · · = u′
i+1 = 0. If f = xu′ − xv′ , then the hypothesis on > implies that

v′1 + v′2 + · · ·+ v′i > 0. Our choice of the index i and the equation min(u′
i, v′i) = 0 imply

that u′
i > 0 = v′i whence xu >grevlex xv. Since xu and xv are arbitrary monomials, we

conclude that > equals >grevlex. □

P2.3. Let M be an (m × n)-matrix with nonnegative real entries and let r1, r2, . . . , rm denote
the rows of M. Assume that Ker(M) ∩ Zn = {0}. Define a binary relation >M on the
monomials in the polynomial ring S := K[x1, x2, . . . , xn] as follows:

xu >M xv if there is an positive integer i (at most m) such that u · ri > v · ri and
u · rj = v · rj for all 1 ⩽ j ⩽ i − 1.

i. Show that >M is a monomial order on the polynomial ring S.

ii. When M :=

[
1 1 1
1 1 0
1 0 0

]
, show that >M equals >grevlex on K[x, y, z].

iii. For the (n × n)-identity matrix I, show that >lex equals >I.

Solution.
i. We check the three defining properties of a monomial order.

(total order) Suppose that u and v are distinct vectors in Nn. Since we know that
Ker(M) ∩ Zn = {0}, there exists a positive integer i such that (u− v) · rj = 0 for
all 1 ⩽ j ⩽ i − 1, and (u− v) · ri ̸= 0. When (u− v) · ri > 0, we have xu >M xv

and otherwise xv >M xu. Therefore, the binary relation >M is a total order on Nn.
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(multiplicative) Suppose that xu >M xv. By definition, there exists a positive integer
i such that u · ri = v · rj for all 1 ⩽ j ⩽ i − 1 and u · ri > v · ri. Since xw xu = xw+u

and xw xv = xw+v, it follows that (w + u) · rj = (w + v) · rj for all 1 ⩽ j ⩽ i − 1
and (w+ u) · ri > (w+ v) · ri which implies that xw xu >M xw xu.

(artinian) Let e1, e2, . . . , en be the standard basis of Zn, so xj = xej for all 1 ⩽ j ⩽ n.
Since we have Ker(M) ∩ Zn = {0}, there exists a positive integer i (for each ek)
such that ek · rj = 0 for all 1 ⩽ j ⩽ i − 1 and ek · rj ̸= 0. Because M has nonnegative
entries, we have ek · ri > 0. Therefore, we see that xk >M 1 for all 1 ⩽ k ⩽ n.

ii. We have

xu1yu2zu3 >M xv1yv2zv3 ⇐⇒



u1 + u2 + u3 > v1 + v2 + v3

or
{

u1 + u2 + u3 = v1 + v2 + v3
u1 + u2 > v1 + v2

or


u1 + u2 + u3 = v1 + v2 + v3

u1 + u2 = v1 + v2
u1 > v1

⇔



u1 + u2 + u3 > v1 + v2 + v3

or
{

u1 + u2 + u3 = v1 + v2 + v3
u3 < v3

or


u1 + u2 + u3 = v1 + v2 + v3

u3 = v3
u2 < v2

⇔ xu1yu2zu3 >grevlex xv1yv2zv3 .

iii. We have

xu >I x
v ⇔ there exist i such that uj = vj for all 1 ⩽ j ⩽ i − 1 and ui > vi

⇔ xu >lex xv . □

P2.4. Let F2 be a finite field with 2 elements and consider the ideal I in F2[x, y, z] consisting of
all polynomials that vanish at every point in A3(F2).

i. Show that
〈

x2 − x, y2 − y, z2 − z
〉
⊆ I.

ii. For any coefficients a0, a1, . . . , a7 in F2, show that the polynomial

f := a0 xyz + a1 xy + a2x z + a3 yz + a4 x + a5 y + a6 z + a7

belongs to the ideal I if and only if we have a0 = a1 = · · · = a7 = 0.
iii. Show that I =

〈
x2 − x, y2 − y, z2 − z

〉
.

Solution.
i. Since the univariate polynomial t2 − t = t(t − 1) has both 0 and 1 as roots for any

t ∈ {x, y, z}, it follows that
〈

x2 − x, y2 − y, z2 − z
〉
⊆ I.
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ii. When a0 = a1 = · · · = a7 = 0, the polynomial f is the zero polynomial which vanishes
at every point. Now, suppose that f vanishes at every point in A3(F2). It follows that
f (0, 0, 0) = a7 = 0, f (1, 0, 0) = a4 = 0, f (0, 1, 0) = a5 = 0, and f (0, 0, 1) = a6 = 0. We
deduce that f (1, 1, 0) = a1 = 0, f (1, 0, 1) = a2 = 0, and f (0, 1, 1) = a3 = 0. Finally, we
have f (1, 1, 1) = a0 = 0.

iii. Fix a monomial order > on F2[x, y, z] and consider a polynomial g in I. The division
algorithm implies that there exists polynomials h1, h2, h3 ∈ F2[x, y, z] and scalars
a0, a1, . . . , a7 ∈ F2 such that

g = h1(x2 − x) + h2(y2 − y) + h3(z2 − z) + a0xyz + a1xy + a2xz + a3yz + a4x + a5y + a6z + a7

Since part i yields g − h1(x2 − x) − h2(y2 − y) − h3(z2 − z) ∈ I, part ii establishes
that a0 = a1 = · · · = a7 = 0. We conclude that g ∈

〈
x2 − x, y2 − y, z2 − z

〉
and

I =
〈

x2 − x, y2 − y, z2 − z
〉
. □

P2.5. A ring R satisfies the artinian if any descending sequence of ideals in R stabilizes. In
other words, for any descending sequence I0 ⊇ I1 ⊇ I2 ⊇ · · · of ideals in R, there exists a
nonnegative integer m such that Im = Im+1 = Im+2 = · · · .

i. For any positive integer n, show that the quotient rings Z/⟨n⟩ and K[x]/⟨xn⟩ are
artinian.

ii. Show that rings Z and K[x] are not artinian.
iii. Show that every prime ideal in an artinian ring is maximal.

Solution.
i. Since Z/⟨n⟩ has only n distinct elements, every descending chain of ideals can have

at most n distinct ideals, so must stabilize.
Regarding the quotient K[x]/⟨xn⟩ as K-vector space, the monomials 1, x, . . . , xn−1

form a basis, so dimK K[x]/⟨xn⟩ = n. Moreover, every ideal in K[x]/⟨xn⟩ is also a
K-vector subspace. It follows that every descending chain of ideals can have at most
n + 1 distinct ideals.

ii. Since ⟨2⟩ ⊃ ⟨22⟩ ⊃ ⟨23⟩ ⊃ · · · and ⟨x⟩ ⊃ ⟨x2⟩ ⊃ ⟨x3⟩ ⊃ · · · are infinite descending
chains of distinct ideals in Z and K[x] respectively, neither ring is artinian.

iii. Let I be a prime ideal in an artinian ring R. Since I is prime, the quotient ring R/I
is a domain. A descending chain of ideals in the quotient ring R/I pulls back to a
descending chain of ideals in R. Since R is artinian, this the chain in R stabilizes which
implies that the chain in R/I also stabilizes. In other words, the quotient ring R/I is
also artinian.

Let f be a nonzero element in the quotient ring R/I. Since R/I is artinian, it
follows that ⟨ f m⟩ =

〈
f m+1〉 for some positive integer m, so f m = g f m+1 for some

g ∈ R/I. Since R/I is a domain and f ̸= 0, we may cancel f m from both sides of this
equation to obtain g f = 1R. It follows that f is a unit. Therefore, R/I is a field and I
is a maximal ideal. □

MATH 413/813 : 2025 page 4 of 4

https://creativecommons.org/licenses/by-nc-sa/4.0/

