Solutions 5

P5.1. Let \mathbb{K} be a field.

i. For any univariate polynomial $f := a_m x^m + a_{m-1} x^{m-1} + \cdots + a_1 x + a_0$ of degree *m* in the ring $\mathbb{K}[x]$, define its *homogenization* in the ring $\mathbb{K}[x, y]$ to be

$$f^{\mathsf{h}} := a_m x^m + a_{m-1} x^{m-1} y + \dots + a_1 x y^{m-1} + a_0 y^m$$
.

Prove that the polynomial f has a root in the field \mathbb{K} if and only if there exists a point (b, c) in $\mathbb{A}^2(\mathbb{K})$ such that $(b, c) \neq (0, 0)$ and $f^{\mathsf{h}}(b, c) = 0$.

- **ii.** Assume that the field \mathbb{K} is not algebraically closed. Exhibit a bivariate polynomial *h* in the ring $\mathbb{K}[x, y]$ such that the affine subvariety V(h) in $\mathbb{A}^2(\mathbb{K})$ is just the origin (0, 0).
- **iii.** Assume that the field \mathbb{K} is not algebraically closed. For any positive integer *n*, demonstrate that there exists a polynomial *f* in the ring $\mathbb{K}[x_1, x_2, ..., x_n]$ such that the affine subvariety V(f) in $\mathbb{A}^n(\mathbb{K})$ is the origin (0, 0, ..., 0).
- iv. Assume that the field \mathbb{K} is not algebraically closed. Prove that any affine subvariety $X = V(g_1, g_2, \dots, g_r)$ in $\mathbb{A}^n(\mathbb{K})$ can be defined by a single equation.

Solution.

i. Suppose that an element *b* in the field \mathbb{K} is a root of the polynomial *f*. It follows that $0 = f(b) = f^{h}(b,1)$ and $(b,1) \in \mathbb{A}^{2}(\mathbb{K})$. Conversely, suppose that the point (b,c) in $\mathbb{A}^{2}(\mathbb{K})$ satisfies $(b,c) \neq (0,0)$ and $f^{h}(b,c) = 0$. When c = 0, we would have $f^{h}(b,0) = a_{m} b^{m} = 0$. Since deg(f) = m, it follows that $a_{m} \neq 0$ and we deduce that b = 0. Hence, we must have $c \neq 0$. It follows that

$$0 = f^{h}(b,c) = a_{m} b^{m} + a_{m-1} b^{m-1} c + \dots + a_{1} b c^{m-1} + a_{0} c^{m}$$

= $c^{m} \left(a_{m} \left(\frac{b}{c} \right)^{m} + a_{m-1} \left(\frac{b}{c} \right)^{m-1} + \dots + a_{1} \left(\frac{b}{c} \right) + a_{0} \right) = c^{m} f\left(\frac{b}{c} \right).$

Therefore, the element b/c in the field \mathbb{K} is a root of the polynomial f.

- ii. As the field \mathbb{K} is not algebraically closed, there exists a polynomial f in $\mathbb{K}[x]$ having positive degree and no root in \mathbb{K} . For the homogeneous bivariate polynomial $h := f^h$, part i implies that the origin is the only solution of h = 0 in $\mathbb{A}^2(\mathbb{K})$.
- iii. We proceed by induction on *n*. When n = 1, the hypothesis that the field \mathbb{K} is not algebraically closed establishes the claim. When n = 2, the assertion follows from part ii. Suppose that the claim holds for some positive integer *n*: there exists a polynomial *g* in the ring $\mathbb{K}[x_1, x_2, \ldots, x_n]$ such that the only solution of g = 0 in $\mathbb{A}^n(\mathbb{K})$ is the origin. By part ii, there also exists a polynomial *h* in the ring $\mathbb{K}[x_{n+1}, y]$ such that the only solution of h = 0 is the origin in $\mathbb{A}^2(\mathbb{K})$. Thus, the composite polynomial $f(x_1, x_2, \ldots, x_{n+1}) = h(x_{n+1}, g(x_1, x_2, \ldots, x_n))$ in $\mathbb{K}[x_1, x_2, \ldots, x_{n+1}]$ equals zero if and only if $x_{n+1} = 0$ and $g(x_1, x_2, \ldots, x_n) = 0$, which is is equivalent to

$$x_1 = x_2 = \dots = x_n = x_{n+1} = 0$$

completing the induction.

iv. Part iii shows that there is a polynomial f in $\mathbb{K}[y_1, y_2, \dots, y_r]$ such that the only solution to f = 0 in $\mathbb{A}^r(\mathbb{K})$ is the origin. The composite polynomial $h := f(g_1, g_2, \dots, g_r)$ in

 $\mathbb{K}[x_1, x_2, \dots, x_n]$ vanishes if and only if we have $g_1 = g_2 = \dots = g_r = 0$. We conclude that $X = V(g_1, g_2, \dots, g_r) = V(h)$.

P5.2. For any ideal *I* in the ring $S := \mathbb{K}[x_1, x_2, ..., x_n]$ and any polynomial *f* in *S*, the *saturation* of *I* with respect to *f* is the set

 $(I: f^{\infty}) := \{g \in S \mid \text{there exists a positive integer } m \text{ such that } f^m g \in I\}.$

- **i.** Prove that $(I: f^{\infty})$ is an ideal in the ring *S*.
- **ii.** Prove that there is an ascending chain of ideals $(I:f) \subseteq (I:f^2) \subseteq (I:f^3) \subseteq \cdots$.
- iii. For any positive integer ℓ , prove that we have the equality $(I: f^{\infty}) = (I: f^{\ell})$ if and only if we have the equality $(I: f^{\ell}) = (I: f^{\ell+1})$.

Solution.

i. Suppose that the polynomials g_1 and g_2 belong to $(I : f^{\infty})$. By definition, there exists positive integers m_1 and m_2 such that $f^{m_1}g_1 \in I$ and $f^{m_2}g_2 \in I$. Consider polynomials h_1 and h_2 in *S*. Setting $m := \max(m_1, m_2)$, we have

$$f^{m}(h_{1}g_{1}+h_{2}g_{2})=h_{1}f^{m-m_{1}}(f^{m_{1}}g_{1})+h_{2}f^{m-m_{2}}(f^{m_{2}}g_{2})\in I$$

so $h_1 g_1 + h_2 g_2 \in (I : f^{\infty})$. We deduce that $(I : f^{\infty})$ is an ideal in *S*.

- ii. Let ℓ be a positive integer and suppose that $g \in (I: f^{\ell})$. By definition, we have $f^{\ell} g \in I$. As I is an ideal, it follows that $f(f^{\ell} g) = f^{\ell+1} g \in I$. Since $g \in (I: f^{\ell+1})$, we conclude that $(I: f^{\ell}) \subseteq (I: f^{\ell+1})$.
- iii. For any positive integer ℓ , the definiton of saturation and part ii establish the inclusions $(I: f^{\ell}) \subseteq (I: f^{\infty})$ and $(I: f^{\ell}) \subseteq (I: f^{\ell+1})$.

Suppose that $(I: f^{\infty}) \subseteq (I: f^{\ell})$ and consider an element g in S. It follows that the existence a positive integer m such that $f^m g \in I$ implies that $f^{\ell} g \in I$. Hence, the relation $f^{\ell+1} g \in I$ implies that $f^{\ell} g \in I$ which demonstrates that $(I: f^{\ell+1}) \subseteq (I: f^{\ell})$.

Conversely, suppose that $(I : f^{\ell+1}) \subseteq (I : f^{\ell})$ and consider an element g in S. It follows that the relation $f^{\ell+1}g \in I$ implies that $f^{\ell}g \in I$. Assume that there exists a positive integer m such that $f^m g \in I$. When $m \leq \ell$, we have $f^{\ell}g = f^{\ell-m}(f^m g) \in I$. When $m > \ell$, we have $f^{\ell+1}(f^{m-\ell-1}g) = f^m g \in I$ and the assumption implies that $f^{\ell}(f^{m-\ell-1}g) = f^{m-1}g \in I$. Repeating this process, we obtain $f^{\ell}g \in I$. We conclude that $(I : f^{\infty}) \subseteq (I : f^{\ell})$.

- **P5.3.** The ideals *I* and *J* in the ring $S := \mathbb{K}[x_1, x_2, \dots, x_n]$ are *comaximal* if I + J = S.
 - i. Over an algebraically closed field, show that the ideals *I* and *J* are comaximal if and only if we have $V(I) \cap V(J) = \emptyset$. Without the algebraically closed hypothesis, show that this can be false.
 - **ii.** When the ideals *I* and *J* are comaximal, show that $IJ = I \cap J$.
 - **iii.** When the ideals *I* and *J* are comaximal, show that, for all positive integers *i* and *j*, the ideals I^i and J^j are comaximal.

Solution.

i. Suppose that $I + J = \langle 1 \rangle$. We have $V(I) \cap V(J) = V(I + J) = V(1) = \emptyset$. For the converse, suppose that $\emptyset = V(I) \cap V(J) = V(I + J)$. When \mathbb{K} is an algebraically closed field, the Weak Nullstellensatz implies that $I + J = \langle 1 \rangle$. When the field \mathbb{K} is

not algebraically closed, there exists a polynomial f in the ring $\mathbb{K}[x_1]$ having positive degree and no root in \mathbb{K} . We see that $\langle f \rangle + \langle f \rangle = \langle f \rangle \neq \langle 1 \rangle$, but $V(f) \cap V(f) = \emptyset$.

- **ii.** We always have $I J \subseteq I \cap J$. Suppose that *I* and *J* are comaximal. It follows that there exists elements $f \in I$ and $g \in J$ such that f + g = 1. For any $h \in I \cap J$, we have $h \in I$ and $h \in J$. It follows that $h = h(f + g) = hf + hg \in IJ$ and $IJ \supseteq I \cap J$. We conclude that $IJ = I \cap J$ whenever *I* and *J* are comaximal.
- **iii.** Suppose that *I* and *J* are comaximal. There exists elements $f \in I$ and $g \in J$ such that f + g = 1. For any positive integers *i* and *j*, the binomial theorem gives

$$1 = (f+g)^{i+j-1} = \sum_{k=0}^{i+j-1} \binom{i+j-1}{k} f^k g^{i+j-1-k}.$$

Since the first *i* summands (those index by $0 \le k < i$) are divisible by $g^j \in J^j$ and the last *j* summands (those index by $i \le k \le i + j - 1$) are divisible by $f^i \in I^i$, it follows that $1 = (f + g)^{i+j-1} \in I^i + J^j$. Therefore, the ideals I^i and J^j are comaximal. \Box

- **P5.4.** i. Consider the affine subvariety $X := V(xy yz y, x^2 y^2 z^2)$ in \mathbb{A}^3 . Show that X is a union of three irreducible components. Describe them and find their prime ideals.
 - ii. Show that the set of real points on the irreducible complex surface

$$\mathcal{V}(x^2y - xz^2 + yz^2) \subset \mathbb{A}^3$$

is connected but is not equidimensional; it is the union of a closed curve and a closed surface in the induced Euclidean topology.

Solution.

i. The equation 0 = xy - yz - y = y(x - z - 1) implies that y = 0 or x - z = 1. When y = 0, the equation $0 = x^2 - y^2 - z^2$ implies that $0 = x^2 - z^2 = (x + z)(x - z)$ so x + z = 0 or x - z = 0. When $y \neq 0$, we have x - z = 1 and

$$0 = x^{2} - y^{2} - z^{2} = (x - z)(x + z) - y^{2} = x + z - y^{2} = 2z + 1 - y^{2}.$$

It follows that

$$V(xy - yz - y, x^2 - y^2 - z^2) = V(x - z, y) \cup V(x + z, y) \cup V(x - z - 1, y^2 - 2z - 1).$$

Since each of these components is clearly rational, we see that they are irreducible. Therefore, the affine subvariety $X = V(xy - yz - y, x^2 - y^2 - z^2)$ is the union of three irreducible curves: the x = z diagonal line in the *xz*-plane, the x = -z antidiagonal line in the *xz*-plane, and a parabola lying in the x - z = 1 plane.

ii. We observe that $x^2y - xz^2 + yz^2 = (x^2 + z^2)y - xz^2$. Over the real numbers, the equation $x^2 + z^2 = 0$ implies that x = z = 0. In this situation, any $y \in \mathbb{R}$ satisfies $(x^2 + z^2)y - xz^2$, so the *y*-axis contained the set of real points of $V(x^2y - xz^2 + yz^2)$. When $x^2 + z^2 \neq 0$, the surface has the rational parametrization $\rho: \mathbb{A}^2 \setminus \{(0,0)\} \to \mathbb{A}^3$ defined by

$$\rho(s,t) = \left(s, \frac{st^2}{s^2 + t^2}, t\right)$$

Hence, the real points of the variety $V(x^2y - xz^2 + yz^2)$ are the union of the *y*-axis and surface $\rho(\mathbb{A}^2 \setminus \{(0,0)\})$. Since we have

$$\lim_{(s,t)\to(0,0)}\frac{st^2}{s^2+t^2}=0\,,$$

the origin lies in Zariski closure of the surface. Therefore, the set of real points on affine subvariety $V(x^2y - xz^2 + yz^2)$ in $\mathbb{A}^2(\mathbb{R})$ is connected, but is the union of two proper closed subsets in the induced Euclidean topology.

- **P5.5.** i. Let *I* be a monomial ideal in the ring $S := \mathbb{K}[x_1, x_2, ..., x_n]$. Suppose that the monomial x^u is a minimal generator of the ideal *I* and satisfies $x^u = x^{v_1} x^{v_2}$ for some relative prime monomials x^{v_1} and x^{v_2} . Show $I = (I + \langle x^{v_1} \rangle) \cap (I + \langle x^{v_2} \rangle)$.
 - ii. Using part i, find an irredundant primary decomposition of the monomial ideal

$$\langle x^2y^2, x^2yz, xy^2z, x^2z^2, xyz^2, y^2z^2 \rangle$$
.

Solution.

i. Since *I* is a monomial ideal, it is enough to show that $(I + \langle x^{v_1} \rangle) \cap (I + \langle x^{v_2} \rangle)$ and *I* contain the same monomials. A monomial x^w belongs to $(I + \langle x^{v_j} \rangle)$ if and only if $x^w \in I$ or x^{v_j} dividies x^w . Because x^{v_2} and x^{v_2} are relatively prime, we have

$$x^{w} \in (I + \langle x^{v_{1}} \rangle) \cap (I + \langle x^{v_{2}} \rangle) \quad \Leftrightarrow \quad x^{w} \in I \text{ or } x^{u} = x^{v_{1}+v_{2}} \text{ divides } x^{w} \quad \Leftrightarrow \quad x^{w} \in I.$$

ii. Repeated applications of part i give

$$\begin{array}{l} \langle x^2y^2, x^2yz, xy^2z, x^2z^2, xyz^2, y^2z^2 \rangle \\ = \langle x^2, x^2yz, xy^2z, x^2z^2, xyz^2, y^2z^2 \rangle \cap \langle y^2, x^2yz, xy^2z, xy^2z, xyz^2, y^2z^2 \rangle \\ = \langle x^2, xy^2z, xyz^2, y^2z^2 \rangle \cap \langle y^2, x^2yz, x^2z^2, xyz^2 \rangle \\ = \langle x^2, xy^2z, xyz^2, y^2 \rangle \cap \langle x^2, xy^2z, xyz^2, z^2 \rangle \cap \langle y^2, x^2yz, x^2, xyz^2 \rangle \cap \langle y^2, x^2yz, z^2, xyz^2 \rangle \\ = \langle x^2, y^2, xyz^2 \rangle \cap \langle x^2, xy^2z, z^2 \rangle \cap \langle x^2, y^2, xyz^2 \rangle \cap \langle x^2yz, y^2, z^2 \rangle \\ = \langle x^2, y^2, x \rangle \cap \langle x^2, y^2, y \rangle \cap \langle x^2, y^2, z^2 \rangle \cap \langle x^2, x, z^2 \rangle \cap \langle x^2, y^2, z^2 \rangle \\ = \langle x, y^2 \rangle \cap \langle x^2, y \rangle \cap \langle x^2, y^2, z^2 \rangle \cap \langle x, z^2 \rangle \cap \langle x^2, z \rangle \cap \langle y, z^2 \rangle \cap \langle y^2, z \rangle \\ = \langle x, y^2 \rangle \cap \langle x^2, y \rangle \cap \langle x^2, y^2, z^2 \rangle \cap \langle x, z^2 \rangle \cap \langle x^2, z \rangle \cap \langle y, z^2 \rangle \cap \langle y^2, z \rangle$$

For any monomial ideal *J* generated by pure powers of a subset of the variables, every zerodivisor in the quotient ring *S*/*J* is nilpotent, so the ideal *J* is primary. Hence, $\langle x, y^2 \rangle$ and $\langle x^2, y \rangle$ are both $\langle x, y \rangle$ -primary ideals, $\langle x, z^2 \rangle$ and $\langle x^2, z \rangle$ are both $\langle x, z \rangle$ -primary ideals, and $\langle y, z^2 \rangle$ and $\langle y^2, z \rangle$ are both $\langle y, z \rangle$ -primary ideals. Thus, the irredundant irreducible decomposition is

$$\begin{array}{l} \langle x^2y^2, x^2yz, xy^2z, x^2z^2, xyz^2, y^2z^2 \rangle = \langle x^2, xy, y^2 \rangle \cap \langle x^2, y^2, z^2 \rangle \cap \langle x^2, xz, z^2 \rangle \cap \langle y^2, yz, z^2 \rangle \\ = \langle x, y \rangle^2 \cap \langle x^2, y^2, z^2 \rangle \cap \langle x, z \rangle^2 \cap \langle y, z \rangle^2 \ . \end{array}$$

