
Solutions 5

P5.1. Let K be a field.
i. For any univariate polynomial f := am xm + am−1 xm−1 + · · ·+ a1 x + a0 of degree m

in the ring K[x], define its homogenization in the ring K[x, y] to be

f h := am xm + am−1 xm−1 y + · · ·+ a1 x ym−1 + a0 ym .

Prove that the polynomial f has a root in the field K if and only if there exists a point
(b, c) in A2(K) such that (b, c) ̸= (0, 0) and f h(b, c) = 0.

ii. Assume that the field K is not algebraically closed. Exhibit a bivariate polynomial h in
the ring K[x, y] such that the affine subvariety V(h) in A2(K) is just the origin (0, 0).

iii. Assume that the field K is not algebraically closed. For any positive integer n,
demonstrate that there exists a polynomial f in the ring K[x1, x2, . . . , xn] such that the
affine subvariety V( f ) in An(K) is the origin (0, 0, . . . , 0).

iv. Assume that the field K is not algebraically closed. Prove that any affine subvariety
X = V(g1, g2, . . . , gr) in An(K) can be defined by a single equation.

Solution.
i. Suppose that an element b in the field K is a root of the polynomial f . It follows

that 0 = f (b) = f h(b, 1) and (b, 1) ∈ A2(K). Conversely, suppose that the point
(b, c) in A2(K) satisfies (b, c) ̸= (0, 0) and f h(b, c) = 0. When c = 0, we would have
f h(b, 0) = am bm = 0. Since deg( f ) = m, it follows that am ̸= 0 and we deduce that
b = 0. Hence, we must have c ̸= 0. It follows that

0 = f h(b, c) = am bm + am−1 bm−1 c + · · ·+ a1 b cm−1 + a0 cm

= cm
(

am

(b
c
)m

+ am−1

(b
c
)m−1

+ · · ·+ a1

(b
c
)
+ a0

)
= cm f

(b
c
)

.

Therefore, the element b/c in the field K is a root of the polynomial f .
ii. As the field K is not algebraically closed, there exists a polynomial f in K[x] having

positive degree and no root in K. For the homogeneous bivariate polynomial h := f h,
part i implies that the origin is the only solution of h = 0 in A2(K).

iii. We proceed by induction on n. When n = 1, the hypothesis that the field K is not
algebraically closed establishes the claim. When n = 2, the assertion follows from
part ii. Suppose that the claim holds for some positive integer n: there exists a
polynomial g in the ring K[x1, x2, . . . , xn] such that the only solution of g = 0 in An(K)
is the origin. By part ii, there also exists a polynomial h in the ring K[xn+1, y] such
that the only solution of h = 0 is the origin in A2(K). Thus, the composite polynomial
f (x1, x2, . . . , xn+1) = h

(
xn+1, g(x1, x2, . . . , xn)

)
in K[x1, x2, . . . , xn+1] equals zero if and

only if xn+1 = 0 and g(x1, x2 . . . , xn) = 0, which is is equivalent to

x1 = x2 = · · · = xn = xn+1 = 0

completing the induction.
iv. Part iii shows that there is a polynomial f in K[y1, y2, . . . , yr] such that the only solution

to f = 0 in Ar(K) is the origin. The composite polynomial h := f (g1, g2, . . . , gr) in
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K[x1, x2, . . . , xn] vanishes if and only if we have g1 = g2 = · · · = gr = 0. We conclude
that X = V(g1, g2, . . . , gr) = V(h). □

P5.2. For any ideal I in the ring S := K[x1, x2, . . . , xn] and any polynomial f in S, the saturation
of I with respect to f is the set

(I : f ∞) :=
{

g ∈ S
∣∣ there exists a positive integer m such that f m g ∈ I

}
.

i. Prove that (I : f ∞) is an ideal in the ring S.
ii. Prove that there is an ascending chain of ideals (I : f ) ⊆ (I : f 2) ⊆ (I : f 3) ⊆ · · · .

iii. For any positive integer ℓ, prove that we have the equality (I : f ∞) = (I : f ℓ) if and
only if we have the equality (I : f ℓ) = (I : f ℓ+1).

Solution.
i. Suppose that the polynomials g1 and g2 belong to (I : f ∞). By definition, there exists

positive integers m1 and m2 such that f m1 g1 ∈ I and f m2 g2 ∈ I. Consider polynomials
h1 and h2 in S. Setting m := max(m1, m2), we have

f m(h1 g1 + h2 g2) = h1 f m−m1 ( f m1 g1) + h2 f m−m2 ( f m2 g2) ∈ I

so h1 g1 + h2 g2 ∈ (I : f ∞). We deduce that (I : f ∞) is an ideal in S.
ii. Let ℓ be a positive integer and suppose that g ∈ (I : f ℓ). By definition, we have f ℓ g ∈ I.

As I is an ideal, it follows that f ( f ℓ g) = f ℓ+1 g ∈ I. Since g ∈ (I : f ℓ+1), we conclude
that (I : f ℓ) ⊆ (I : f ℓ+1).

iii. For any positive integer ℓ, the definiton of saturation and part ii establish the inclusions
(I : f ℓ) ⊆ (I : f ∞) and (I : f ℓ) ⊆ (I : f ℓ+1).

Suppose that (I : f ∞) ⊆ (I : f ℓ) and consider an element g in S. It follows that
the existence a positive integer m such that f m g ∈ I implies that f ℓ g ∈ I. Hence, the
relation f ℓ+1 g ∈ I implies that f ℓ g ∈ I which demonstrates that (I : f ℓ+1) ⊆ (I : f ℓ).

Conversely, suppose that (I : f ℓ+1) ⊆ (I : f ℓ) and consider an element g in S. It
follows that the relation f ℓ+1g ∈ I implies that f ℓ g ∈ I. Assume that there exists a
positive integer m such that f m g ∈ I. When m ⩽ ℓ, we have f ℓ g = f ℓ−m( f m g) ∈ I.
When m > ℓ, we have f ℓ+1( f m−ℓ−1 g) = f m g ∈ I and the assumption implies that
f ℓ( f m−ℓ−1g) = f m−1g ∈ I. Repeating this process, we obtain f ℓ g ∈ I. We conclude
that (I : f ∞) ⊆ (I : f ℓ). □

P5.3. The ideals I and J in the ring S := K[x1, x2, . . . , xn] are comaximal if I + J = S.
i. Over an algebraically closed field, show that the ideals I and J are comaximal if and

only if we have V(I) ∩ V(J) = ∅. Without the algebraically closed hypothesis, show
that this can be false.

ii. When the ideals I and J are comaximal, show that I J = I ∩ J.
iii. When the ideals I and J are comaximal, show that, for all positive integers i and j, the

ideals Ii and J j are comaximal.

Solution.
i. Suppose that I + J = ⟨1⟩. We have V(I) ∩ V(J) = V(I + J) = V(1) = ∅. For the

converse, suppose that ∅ = V(I) ∩ V(J) = V(I + J). When K is an algebraically
closed field, the Weak Nullstellensatz implies that I + J = ⟨1⟩. When the field K is
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not algebraically closed, there exists a polynomial f in the ring K[x1] having positive
degree and no root in K. We see that ⟨ f ⟩+ ⟨ f ⟩ = ⟨ f ⟩ ̸= ⟨1⟩, but V( f ) ∩ V( f ) = ∅.

ii. We always have I J ⊆ I ∩ J. Suppose that I and J are comaximal. It follows that there
exists elements f ∈ I and g ∈ J such that f + g = 1. For any h ∈ I ∩ J, we have h ∈ I
and h ∈ J. It follows that h = h( f + g) = h f + h g ∈ I J and I J ⊇ I ∩ J. We conclude
that I J = I ∩ J whenever I and J are comaximal.

iii. Suppose that I and J are comaximal. There exists elements f ∈ I and g ∈ J such that
f + g = 1. For any positive integers i and j, the binomial theorem gives

1 = ( f + g)i+j−1 =
i+j−1

∑
k=0

(
i + j − 1

k

)
f k gi+j−1−k .

Since the first i summands (those index by 0 ⩽ k < i) are divisible by gj ∈ J j and the
last j summands (those index by i ⩽ k ⩽ i + j − 1) are divisible by f i ∈ Ii, it follows
that 1 = ( f + g)i+j−1 ∈ Ii + J j. Therefore, the ideals Ii and J j are comaximal. □

P5.4. i. Consider the affine subvariety X := V(xy − yz − y, x2 − y2 − z2) in A3. Show that X is
a union of three irreducible components. Describe them and find their prime ideals.

ii. Show that the set of real points on the irreducible complex surface

V(x2y − xz2 + yz2) ⊂ A3

is connected but is not equidimensional; it is the union of a closed curve and a closed
surface in the induced Euclidean topology.

Solution.
i. The equation 0 = xy − yz − y = y(x − z − 1) implies that y = 0 or x − z = 1. When

y = 0, the equation 0 = x2 − y2 − z2 implies that 0 = x2 − z2 = (x + z)(x − z) so
x + z = 0 or x − z = 0. When y ̸= 0, we have x − z = 1 and

0 = x2 − y2 − z2 = (x − z)(x + z)− y2 = x + z − y2 = 2z + 1 − y2 .

It follows that

V(xy − yz − y, x2 − y2 − z2) = V(x − z, y) ∪ V(x + z, y) ∪ V(x − z − 1, y2 − 2z − 1) .

Since each of these components is clearly rational, we see that they are irreducible.
Therefore, the affine subvariety X = V(xy − yz − y, x2 − y2 − z2) is the union of three
irreducible curves: the x = z diagonal line in the xz-plane, the x = −z antidiagonal
line in the xz-plane, and a parabola lying in the x − z = 1 plane.

ii. We observe that x2y − xz2 + yz2 = (x2 + z2)y − xz2. Over the real numbers, the
equation x2 + z2 = 0 implies that x = z = 0. In this situation, any y ∈ R satisfies
(x2 + z2)y − xz2, so the y-axis contained the set of real points of V(x2y − xz2 + yz2).
When x2 + z2 ̸= 0, the surface has the rational parametrization ρ : A2 \ {(0, 0)} → A3

defined by

ρ(s, t) =
(

s,
st2

s2 + t2 , t
)

.
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Hence, the real points of the variety V(x2y − xz2 + yz2) are the union of the y-axis and
surface ρ(A2 \ {(0, 0)}). Since we have

lim
(s,t)→(0,0)

st2

s2 + t2 = 0 ,

the origin lies in Zariski closure of the surface. Therefore, the set of real points on
affine subvariety V(x2y − xz2 + yz2) in A2(R) is connected, but is the union of two
proper closed subsets in the induced Euclidean topology. □

P5.5. i. Let I be a monomial ideal in the ring S := K[x1, x2, . . . , xn]. Suppose that the monomial
xu is a minimal generator of the ideal I and satisfies xu = xv1 xv2 for some relative
prime monomials xv1 and xv2 . Show I =

(
I + ⟨xv1⟩

)
∩
(

I + ⟨xv2⟩
)
.

ii. Using part i, find an irredundant primary decomposition of the monomial ideal

⟨x2y2, x2yz, xy2z, x2z2, xyz2, y2z2⟩ .

Solution.
i. Since I is a monomial ideal, it is enough to show that

(
I + ⟨xv1⟩

)
∩
(

I + ⟨xv2⟩
)

and
I contain the same monomials. A monomial xw belongs to

(
I + ⟨xvj⟩

)
if and only if

xw ∈ I or xvj dividies xw. Because xv2 and xv2 are relatively prime, we have

xw ∈
(

I + ⟨xv1⟩
)
∩
(

I + ⟨xv2⟩
)

⇔ xw ∈ I or xu = xv1+v2 divides xw ⇔ xw ∈ I .

ii. Repeated applications of part i give

⟨x2y2, x2yz, xy2z, x2z2, xyz2, y2z2⟩
= ⟨x2, x2yz, xy2z, x2z2, xyz2, y2z2⟩ ∩ ⟨y2, x2yz, xy2z, x2z2, xyz2, y2z2⟩
= ⟨x2, xy2z, xyz2, y2z2⟩ ∩ ⟨y2, x2yz, x2z2, xyz2⟩
= ⟨x2, xy2z, xyz2, y2⟩ ∩ ⟨x2, xy2z, xyz2, z2⟩ ∩ ⟨y2, x2yz, x2, xyz2⟩ ∩ ⟨y2, x2yz, z2, xyz2⟩
= ⟨x2, y2, xyz2⟩ ∩ ⟨x2, xy2z, z2⟩ ∩ ⟨x2, y2, xyz2⟩ ∩ ⟨x2yz, y2, z2⟩
= ⟨x2, y2, x⟩ ∩ ⟨x2, y2, y⟩ ∩ ⟨x2, y2, z2⟩ ∩ ⟨x2, x, z2⟩ ∩ ⟨x2, y2, z2⟩ ∩ ⟨x2, z, z2⟩

∩ ⟨x2, y2, z2⟩ ∩ ⟨y, y2, z2⟩ ∩ ⟨z, y2, z2⟩
= ⟨x, y2⟩ ∩ ⟨x2, y⟩ ∩ ⟨x2, y2, z2⟩ ∩ ⟨x, z2⟩ ∩ ⟨x2, z⟩ ∩ ⟨y, z2⟩ ∩ ⟨y2, z⟩

For any monomial ideal J generated by pure powers of a subset of the variables,
every zerodivisor in the quotient ring S/J is nilpotent, so the ideal J is primary.
Hence,

〈
x, y2〉 and

〈
x2, y

〉
are both ⟨x, y⟩-primary ideals,

〈
x, z2〉 and

〈
x2, z

〉
are both

⟨x, z⟩-primary ideals, and
〈
y, z2〉 and

〈
y2, z

〉
are both ⟨y, z⟩-primary ideals. Thus, the

irredundant irreducible decomposition is

⟨x2y2, x2yz, xy2z, x2z2, xyz2, y2z2⟩ = ⟨x2, xy, y2⟩ ∩ ⟨x2, y2, z2⟩ ∩ ⟨x2, xz, z2⟩ ∩ ⟨y2, yz, z2⟩
= ⟨x, y⟩2 ∩ ⟨x2, y2, z2⟩ ∩ ⟨x, z⟩2 ∩ ⟨y, z⟩2 . □
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