O Cubic Equations

Galois theory originated in studying roots of polynomials. Before
developing the general theory, this chapter focuses on a special case.

0.0 Cardano’s Formulas
What are the solutions to a cubic equation? Consider
ax?*+bx’+cx+d=0 foralla,b,c,d € C, where a # 0.
Rewrite this equation as
0=axd+bx®+cx+d=a(x®+2x2+ £x+ 9).

Since a # 0, it follows that x3 4+ 2x?+ Sx+ % = 0. Hence, reducing to
the monic case has no effect on the roots. In other words, we may
assume without loss of generality thata = 1.

To eliminate the quadratic term, set x = y — 2. The binomial

theorem gives

2 2
2=(y-3) =r-293)+(3) =r-2y+5,

P=y-5 =y -2 +n¢) -G =y -+ 5y- 5.
It follows that
0=x3+bx’+cx+d
=P -by+ 5y +5)+b(y - Ry +5)+c(y—-3) +d

b2 262 b
=V +(-3+oy+ (7 -5 +d).
2 3
Letp:= —bT +candq:= % - % + d. Given the roots of the reduced

cubic y* + py + q, the roots of the monic cubic x3 + bx? + cx + d are
simply translations by —b/3.
To solve the reduced cubic, we exploit the nonlinear substitution
y := z — £. The binomial theorem implies that
p3
2723

VApy+q=(2—pz+ L - L) +p(z—L)+q=2" - L5 +q.

2723 2723

y =2 =322(f) +32(5) + (B) =2 -pz+ 5 -

Multiplying by z3, we deduce that y* + py + q = 0 is equivalent to
the cubic resolvent equation z® + qz3 — p3/27 = 0. Since this cubic
resolvent can be rewritten as (z*)? +q(z*) —p3/27 = 0, the quadratic
formula gives

1 4p3 ! 4p3
3 | — 2 — —_| = 2 L
z_z(qi q+27) and z_\L(qi q+2>.

Back substitution gives a root of the reduced cubic y* + py +q =0
and the monic cubic x3 + bx2 +cx +d = 0.
However, before we can claim to have solved the cubic equation,

there are several questions that need to be answered.
(existence) We essentially assumed that a solution exists. What
justifies this assumption?
(multiplicity) A (generic) cubic equation should have three roots,
but the cubic resolvent has degree 6. Why?
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The quadratic formula states that the
solutions of ax? + bx + ¢ = 0 for all
a,b,c € C, where a # 0, are given by

Y= —b+ b2 —4ac

2a

This substitution generalizes
‘completing the square’ for quadratic
polynomials.



(z = 0) The substitution y := z — 4> assumes z # 0. What
happens when z = 0?
(roots) How does one describe square roots and cube roots
of complex numbers?
We postpone the first three and concentrate on the last question.
Assume thatp # 0in y*+py+q = 0. For any positive n € N, every
nonzero complex number has n distinct nth roots. The cube root
symbol denotes any of the three cube roots of the complex number
under the radical. To understand the cube roots, recall that

—1-;i\/§ec

is athird root of 1. The other cube roots are obtained by multiplying
by w and w?.

w = exp(27i/3) =

et /g2 + 4p3/27 denote a fixed square root of g% + 4p3/27 € C.

With this choice of square root, let

1 4p3
= 2
Zl"\z( —q++\/q*+ 27)

denote a fixed cube root of 3 (—q +vq?+ 4p3/27) € C. The other
cube roots are again obtained by multiplying by w and w?. Since

p # 0, it follows that z; # 0 and z, is a root of the cubic resolvent.

Setting z, := —p/3z;, we see that y, := z; + z, = z; — p/3z; isaroot
of the reduced cubic y* + py + q.
To understand z,, observe that z3z3 = z3(—p/3z,)> = —p?/27 and

i) |
o BB -5

Since z; # 0, these formulas imply that z3 = % (—q —Vq:+ 4p3/27).

Hence, we deduce that

/ 3 3
Zl:ijl( —q+\/q*+ p) and z2=\31%(—q— q2+42i7)

are cube roots such that their product is —p/3. It follows that the
three roots of y* + py + q = 0 are given by

1 3 1 3
5 GLV )
= 31 —_ 2 p 231 —r — 2 p3

, 31 5 p3 s 1 , 4P}
w\J(q+\/q+27 +co\2 q q+27

These are Cardano’s formulas for the roots of the reduced cubic.

Y1 =

/w

V3
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The =+ in the quadratic formula
indicates that a nonzero complex
number has two square roots.

One verifies that w3 = 1 and
—1-iV3

w? = exp(4rmi/3) = 5

Gerolamo Cardano (1501-1576) is
credited with publishing the first
formula for solving cubic equations,
attributing it to Scipione del Ferro
(1465-1526) and Niccolo Fontana
Tartaglia (1500-1557); see G. Cardano,
Artis magnae sive de regulis algebraicis,
liber unus, 2011 Italian and English
translation by M. Tamborini, (1570).
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0.1 Permutations of the Roots

How are solutions of the cubic resolvent z° + qz3 —p?/27 = O related
to roots of the monic cubic x* + bx? + ¢x + d?

0.1.0 Problem. Use Cardano’s formulas to solve y3 + 3y +1 = 0.
Solution. Since the product of the real cube roots
v %(—1+\/§> and v %(—1—\/5)

is =1 = —p/3, Cardano’s formula shows that the roots are

\3/%(—1+\/§)+ \3/%(—1—‘/3)’

Yy =
ya =L (-14V5) + a2 3 (-1-¥5),
vy = 023 (-14V8) + oL (-1~ V5). a

0.1.1 Problem. Use Cardano’s formulas to solve y3 — 3y = 0.

1 4(=3)*\ _ 3
ijz(o+ 0+ =2 )—\/1

Solution. Since

and (—i)® = i, set z; := —i, so z, := —p/3z; = i. Thus, Cardano’s
formulas give the roots y, = —i +1i = 0, ¥, = w(—i) + w2(i) = /3,
and y; = w?(—i) + w(i) = —/3. O

Although Cardano’s formulas only apply to the reduced cubic, we

obtain formulas for the roots of an arbitrary monic cubic as follows.

When z, and z, are the cube roots in Cardano’s formulas, the roots
of x3 + bx? + cx + d are

b
x1 = _§ +Z1 +ZZ’
.__b 2
Xy = —§+COZ1+CO Zy,
. b 2
X3 = —§+a) Z1+CUZ2,
where z, and z, satisfy z,z, = —p/3. We also know that z; is a root

of the cubic resolvent. Our short-term goal is to understand the
relationship between x;, X, x; and z;, z,.
To begin, we express z,, z, in terms of x;, X,, x3. Observe that

b
x1+w2x2+a)x3=—(1+a)2+co)§+3zl+(1+co+c02)zz.

Aswisarootof x3—1 = (x—1)(x*+x+1), we see that 1+ w+w? = 0,
S0 X; + WX, + wX; = 3z; or z; = 2(X; + W?X, + wx;). Similarly, we
have z, = %(xl + WX, +w?x;). This shows that the solutions z;, z, to
the cubic resolvent equation can be expressed in terms of the roots
of the monic cubic polynomial.
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Recall that
—1+iV3 cC.

w = exp(27i/3) = 3

Since w? = w, the roots y, and y; are
complex conjugates.

Obviously, we have

¥ =3y =y —V3)» +V3).

The surprise is that Cardano’s formula
expresses the real roots of y> — 3y in
terms of complex numbers.

Our derivation assumed p # 0, but
one verifies that these formulas give
the correct roots even when p = 0.
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Better yet, the six roots of the cubic resolvent are z,, z,, wz;, Wz,,
w?z,, and w?z,. In terms of X1, X,, X5, these roots are

z, = 3(%; + 0?x, + wXx3), zy = 3(x; + @?X3 + wX,),
wz, = 2(%; + W?x; + wX), wZy = 2(X3 + WX, + wX;),
0z = 2(X3 + @2x; + WX,),  @?z, = 3(%, + @WPX; + WX3).

The solutions to the cubic resolvent equation are simply obtained
from z, by permuting the roots x;, X,, X5.
To get an even better understanding, set D := q* + 4p?/27, so

zy =3 (—q + \/B) and Z, =] 3 (—q - \/B)

We claim that D can be expressed in terms of the roots x, x,, X3.
Observe that

z} -z} = 3(-q+VD) - 3(-q— VD) =VD.
On the other hand, combining the equations
zy — 2y = 3(X; + 02X, + wx3) — 3(%; + @W2x5 + WX,)
3 3.
= 3(@* —w)(x; — x3) = T;(xz —X3),
Zy — wZy = 3(%; + WX, + wX3) — 1 (X3 + WX, + WX;)
3 .
= §(1 —w)(x; — Xx3) = %(xl - X3),
Zy — @32y = 3(X; + W?X, + wXx3) — 3(%; + W2x; + WX3)
3 3
=31 -w?)(x; —x;) = %(xl —X3),

with the factorization z3 — z3 = (2, — 2,)(z; — wz,)(z; — w?z,) gives

\/B = —ﬁ(ﬁ = Xx)(x; = Xx3)(X; — X3) .

Squaring this formula yields

1
D:=q*+ 27 = _ﬁ(xl —X%)%(x) — X3)%(x, — Xx3)*.
The discriminant of x3 + bx? + cx + d is defined to be
A= (x) — x)%(; — x3)% (0, — x3)%.

In this notation, we have g* + 4p3/27 = —A/27 and

- i) (TR

Furthermore, the equations

3 3
A= —4p3 —27q?, p:—%+c, q:&—%+d,

imply that
A = b%c? + 18bcd — 4¢3 — 4b3d — 27d?.

We will see that any symmetric polynomial in X;, X,, X3 can always
be expressed in terms of the coefficients

b=—(x;1+X,+Xx3), C=X1X+X1X3+X,X3, d=—X1X3X5.
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The cubic resolvent has degree 6
because the symmetric group &3 has
order 6.

The discriminant A is unchanged by
permutations of the roots x, x;, X3.
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0.2 Cubic Equations over the Real Numbers

What happens when the cubic equation has real coefficients? The
discriminant of the reduced cubic y* + py + q is

A= (Y — y2)* — ¥3)2(y2 — ¥3)* = —4p* — 27¢>.

The sign of the discriminant determines how many roots are real.

0.2.0 Theorem. When the polynomial y* + py + q € R[y] has distinct

roots, there are two possibilities:

(positive) The roots of y* + py + q are all real if and only if A > 0.

(negative) The polynomial y* + py + q has only one real roots (and the
other two roots are complex conjugates) if and only if A < 0.

Proof. Suppose that y, is a root of the polynomial y* + py + q. It
follows that

0=0=);+py1+q =) +py1 +q= 1)’ +py1 +4,
which implies that the complex conjugate y; is also a root.

When the roots y,,y,, y; are all real and distinct, the definition
A= (y1=¥,)* (31 — y3)*(¥, — ¥3)? shows that A > 0. When the roots
are not all real, one must be real root, say y;, and the other form a
complex conjugate pair, say y, and y,. Setting y, = u + iv where
u,v € R, we obtain

. 2 . 2 . . 2
A=y —(w+iv)) (¥ — (u—iv)) ((u +iv) — (u—iv))
. N2 o N2, 2
= ((y1 —w) —iv) ((; —w) +iv) (2iv)? = —4v*((y; —u)* —v?) .
It follows that A < 0 when there is only one real root. O

To relate this theorem to Cardano’s formulas, recall that
W =21+2;, Y, = wz; + w’z,, V3 = 0’z + wz,,

where the cube roots

z1:=\3/%<—q+\/q2+%) and Zzi=j%<_q_ q2+%>-

are chosen so that z,z, = —p/3.

Suppose that A < 0. The theorem implies that y* + py +q = 0
has precisely one real root and A = —4p® — 27¢?> < 0. Hence, the
square root /g2 + 4p3/27 is real, which means that we can take z,
to be the unique real cube root. The equation z,z, = —p/3 implies
that z, is also the real cube root. It follows that

3 3
= jé(—q+\/q2+%)+jé(—q—\/qu%)

expresses the real root of reduced cubic in terms for real radicals.

Since w? = w, we have a complete understanding of how Cardano’s
formulas work when the discriminant is negative.
The case A > 0 is different. Since A = —4p3 —27q? > 0, one value

of the square root v/q2 + 4p3/27 is

4p3 \/
2
\/q to7 37 =0 37 7
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In other words, the roots of a
polynomial with real coefficients are
either real or come in complex
conjugate pairs.
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Using this, the cube roots are

=g /A = L—g-1,/2
zl._\12< q+i 27) and zz._\12<q i 27).

Both roots z; and z, are nonreal complex numbers when A > 0.

Nevertheless, the equation z,z, = —p/3 guarantees that z, = Zz;.
Hence, Cardano’s formulas become

Yi=2z +2, Y, = wzy + w?z,, V3 = W’z + wz; .

The root y; is real because it is the sum of a complex number and
its conjugate. Since w? = w, the roots y, and y; are also real. We
no longer have a canonical choice of z;; it is just one cube root of
a complex number. Curiously, we are using complex numbers to

express the real roots of a real polynomial.
See Book 2 of R. Bombelli, L'algebra.

0.2.1 Problem (R. Bombelli 1550). Find the roots of y3 — 15y — 4. Prima edizione integrale. Introduzione di
Umberto Forti. Prefazione di E.
Solution. The discriminantis A = —4(—15)3 — 27(—4)? = 13068 > 0, Bortolotti., Biblioteca scientifica

Feltrinelli. 13. Milano: Giangiacomo

so all three roots are real. Since Feltrinelli Editore. Ixiii, 671 p. (1966).

3 (41 28) = v
2 27
and (2 +1i)> =8+ 3(4)i — 3(2) —i =2 + 11i, choose z; = 2 +i. Thus,
Cardano’s formulas give
n=Q+Y+@2-1)=4,
¥ = 3((F1+1V3)2 - 1) + (-1 - iV3)(2 +1) = -2 + /3,
3= 3((-1-iV3)2 -+ (-1 +1V3)2+i)=—2-V3. O

There is a ‘purely real’ solution provide ones use trigonometric
functions rather than radicals.

0.2.2 Theorem (Viéte 1615). Lety? + py +q be a cubic polynomial with F. Viéte, Fontenaensis aequationum
. Lo ; .. itione et datione tractat
real coefficients. When the discriminant is positive, we have p < 0 and TECOSTILIONE et emeneaiione ractatus

duo, Paris, France (1615).
the roots are
=2/ cos(9),

yzzzwl%pcos(6+27”),
Vs :21/%pcos(6+47”),

where the real number 9 is defined by

0= 1 arccos( 3\/§q ) . [ ]
3 2p\/-p
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