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Galois theory originated in studying roots of polynomials. Before
developing the general theory, this chapter focuses ona special case.

0.0 Ⅽardano’s Formulas
What are the solutions to a cubic equation? Ⅽonsider𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0 for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ, where 𝑎 ≠ 0.
Rewrite this equation as0 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 𝑎(𝑥3 + 𝑏𝑎𝑥2 + 𝑐𝑎𝑥 + 𝑑𝑎) .
Since 𝑎 ≠ 0, it follows that 𝑥3+ 𝑏𝑎𝑥2+ 𝑐𝑎𝑥+ 𝑑𝑎 = 0. Hence, reducing to
the monic case has no effect on the roots. Ɪn other words, we may
assume without loss of generality that 𝑎 = 1.

The quadratic formula states that the
solutions of 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 for all𝑎, 𝑏, 𝑐 ∈ ℂ, where 𝑎 ≠ 0, are given by

𝑥 = −𝑏 ±√𝑏2 − 4𝑎𝑐2𝑎 .

To eliminate the quadratic term, set 𝑥 ∶= 𝑦 − 𝑏3 . The binomial
theorem gives𝑥2 = (𝑦 − 𝑏3 )2 = 𝑦2 − 2𝑦(𝑏3 ) + (𝑏3 )2 = 𝑦2 − 2𝑏3 𝑦 + 𝑏29 ,𝑥3 = (𝑦 − 𝑏3 )3 = 𝑦3 − 3𝑦2(𝑏3 ) + 3𝑦(𝑏3 )2 − (𝑏3 )3 = 𝑦3 − 𝑏𝑦2 + 𝑏23 𝑦 − 𝑏327 .
Ɪt follows that0 = 𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑= (𝑦3 − 𝑏𝑦2 + 𝑏23 𝑦 + 𝑏327 ) + 𝑏(𝑦2 − 2𝑏3 𝑦 + 𝑏29 ) + 𝑐(𝑦 − 𝑏3 ) + 𝑑= 𝑦3 + (−𝑏23 + 𝑐)𝑦 + (2𝑏327 − 𝑏𝑐3 + 𝑑) .
Ⅼet 𝑝∶= −𝑏23 + 𝑐 and 𝑞∶= 2𝑏327 − 𝑏𝑐3 + 𝑑. Given the roots of the reduced
cubic 𝑦3 + 𝑝𝑦 +𝑞, the roots of the monic cubic 𝑥3 + 𝑏𝑥2 + 𝑐𝑥+𝑑 are
simply translations by −𝑏/3.

This substitution generalizes
‘completing the square’ for quadratic
polynomials.

To solve the reduced cubic, we exploit the nonlinear substitution𝑦∶= 𝑧 − 𝑝3𝑧 . The binomial theorem implies that𝑦3 = 𝑧3 − 3𝑧2( 𝑝3𝑧 ) + 3𝑧( 𝑝3𝑧 )2 + ( 𝑝3𝑧 )3 = 𝑧3 − 𝑝𝑧 + 𝑝23𝑧 − 𝑝327𝑧3 ,𝑦3 + 𝑝𝑦 + 𝑞 = (𝑧3 − 𝑝𝑧 + 𝑝23𝑧 − 𝑝327𝑧3 ) + 𝑝(𝑧 − 𝑝3𝑧 ) + 𝑞 = 𝑧3 − 𝑝327𝑧3 + 𝑞.
Ⅿultiplying by 𝑧3, we deduce that 𝑦3 + 𝑝𝑦 + 𝑞 = 0 is equivalent to
the cubic resolvent equation 𝑧6 + 𝑞𝑧3 − 𝑝3/27 = 0. Since this cubic
resolvent can be rewritten as (𝑧3)2+𝑞(𝑧3)−𝑝3/27 = 0, the quadratic
formula gives

𝑧3 = 12 (−𝑞 ±√𝑞2 + 4𝑝327 ) and 𝑧 = 3√√√√12 (−𝑞 ±√𝑞2 + 4𝑝327 ) .
Back substitution gives a root of the reduced cubic 𝑦3 + 𝑝𝑦 + 𝑞 = 0
and the monic cubic 𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0.
However, before we can claim to have solved the cubic equation,

there are several questions that need to be answered.
(existence) We essentially assumed that a solution exists. What

justifies this assumption?
(multiplicity) A (generic) cubic equation should have three roots,

but the cubic resolvent has degree 6. Why?
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(𝑧 = 0) The substitution 𝑦 ∶= 𝑧 − 𝑝3𝑧 assumes 𝑧 ≠ 0. What
happens when 𝑧 = 0?

(roots) How does one describe square roots and cube roots
of complex numbers?

We postpone the first three and concentrate on the last question.

The ± in the quadratic formula
indicates that a nonzero complex
number has two square roots.

Assume that𝑝 ≠ 0 in 𝑦3+𝑝𝑦+𝑞 = 0. For any positive𝑛 ∈ ℕ, every
nonzero complex number has 𝑛 distinct 𝑛th roots. The cube root
symbol denotes any of the three cube roots of the complex number
under the radical. To understand the cube roots, recall that

𝜔 = exp(2𝜋i/3) = −1 + i√32 ∈ ℂ
is a third root of 1. The other cube roots are obtained bymultiplying
by 𝜔 and 𝜔2.

One verifies that 𝜔3 = 1 and𝜔2 = exp(4𝜋i/3) = −1−i√32 .

Ⅼet √𝑞2 + 4𝑝3/27 denote a fixed square root of 𝑞2 + 4𝑝3/27 ∈ ℂ.
With this choice of square root, let

𝑧1 ∶= 3√√√√12 (−𝑞 +√𝑞2 + 4𝑝327 )
denote a fixed cube root of 12 (−𝑞 + √𝑞2 + 4𝑝3/27) ∈ ℂ. The other
cube roots are again obtained by multiplying by 𝜔 and 𝜔2. Since𝑝 ≠ 0, it follows that 𝑧1 ≠ 0 and 𝑧1 is a root of the cubic resolvent.
Setting 𝑧2 ∶= −𝑝/3𝑧1, we see that 𝑦1 ∶= 𝑧1 + 𝑧2 = 𝑧1 − 𝑝/3𝑧1 is a root
of the reduced cubic 𝑦3 + 𝑝𝑦 + 𝑞.
To understand 𝑧2, observe that 𝑧31𝑧32 = 𝑧31(−𝑝/3𝑧1)3 = −𝑝3/27 and

𝑧31 [12(−𝑞 −√𝑞2 + 4𝑝327 )]
= [12 (−𝑞 +√𝑞2 + 4𝑝327 )] [12(−𝑞 −√𝑞2 + 4𝑝327 )] = −𝑝327 .

Since 𝑧1 ≠ 0, these formulas imply that 𝑧32 = 12 (−𝑞 − √𝑞2 + 4𝑝3/27).
Hence, we deduce that

𝑧1 = 3√√√√12 (−𝑞 +√𝑞2 + 4𝑝327 ) and 𝑧2 = 3√√√√12 (−𝑞 −√𝑞2 + 4𝑝327 )
are cube roots such that their product is −𝑝/3. Ɪt follows that the
three roots of 𝑦3 + 𝑝𝑦 + 𝑞 = 0 are given by

𝑦1 = 3√√√√12 (−𝑞 +√𝑞2 + 4𝑝327 )+ 3√√√√12 (−𝑞 −√𝑞2 + 4𝑝327 ) ,
𝑦2 = 𝜔 3√√√√12 (−𝑞 +√𝑞2 + 4𝑝327 ) + 𝜔2 3√√√√12 (−𝑞 −√𝑞2 + 4𝑝327 ) ,
𝑦3 = 𝜔2 3√√√√12 (−𝑞 +√𝑞2 + 4𝑝327 ) + 𝜔 3√√√√12 (−𝑞 −√𝑞2 + 4𝑝327 ) .

These are Ⅽardano’s formulas for the roots of the reduced cubic.

Gerolamo Ⅽardano (1501–1576) is
credited with publishing the first
formula for solving cubic equations,
attributing it to Scipione del Ferro
(1465–1526) and Niccolò Fontana
Tartaglia (1500–1557); see G. Ⅽardano,
Artis magnae sive de regulis algebraicis,
liber unus, 2011 Ɪtalian and English
translation by Ⅿ. Tamborini, (1570).
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0.1 Permutations of the Roots
How are solutions of the cubic resolvent 𝑧6+𝑞𝑧3−𝑝3/27 = 0 related
to roots of the monic cubic 𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑?

Recall that𝜔 = exp(2𝜋i/3) = −1+i√33 ∈ ℂ.0.1.0 Problem. Use Ⅽardano’s formulas to solve 𝑦3 + 3𝑦 + 1 = 0.
Solution. Since the product of the real cube roots

3√12 (−1 + √5) and 3√12 (−1 − √5)
is −1 = −𝑝/3, Ⅽardano’s formula shows that the roots are

𝑦1 = 3√12 (−1 + √5)+ 3√12 (−1 − √5) ,
𝑦2 = 𝜔 3√12 (−1 + √5) + 𝜔2 3√12 (−1 − √5) ,
𝑦3 = 𝜔2 3√12 (−1 + √5) + 𝜔 3√12 (−1 − √5) .

Since 𝜔2 = 𝜔, the roots 𝑦2 and 𝑦3 are
complex conjugates.

0.1.1 Problem. Use Ⅽardano’s formulas to solve 𝑦3 − 3𝑦 = 0. Obviously, we have𝑦3 − 3𝑦 = 𝑦(𝑦 − √3)(𝑦 + √3).
Solution. Since

3√√√√12 (0 +√0+ 4(−3)327 ) = 3√i
and (−i)3 = i, set 𝑧1 ∶= −i, so 𝑧2 ∶= −𝑝/3𝑧1 = i. Thus, Ⅽardano’s
formulas give the roots 𝑦1 = −i + i = 0, 𝑦2 = 𝜔(−i) + 𝜔2(i) = √3,
and 𝑦3 = 𝜔2(−i) + 𝜔(i) = −√3.

The surprise is that Ⅽardano’s formula
expresses the real roots of 𝑦3 − 3𝑦 in
terms of complex numbers.

Although Ⅽardano’s formulas only apply to the reduced cubic, we
obtain formulas for the roots of an arbitrary monic cubic as follows.
When 𝑧1 and 𝑧2 are the cube roots in Ⅽardano’s formulas, the roots
of 𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 are𝑥1 ∶= −𝑏3 + 𝑧1 + 𝑧2 ,

𝑥2 ∶= −𝑏3 + 𝜔𝑧1 + 𝜔2𝑧2 ,
𝑥3 ∶= −𝑏3 + 𝜔2𝑧1 + 𝜔𝑧2 ,

where 𝑧1 and 𝑧2 satisfy 𝑧1𝑧2 = −𝑝/3. We also know that 𝑧1 is a root
of the cubic resolvent. Our short‑term goal is to understand the
relationship between 𝑥1, 𝑥2, 𝑥3 and 𝑧1, 𝑧2.

Our derivation assumed 𝑝 ≠ 0, but
one verifies that these formulas give
the correct roots even when 𝑝 = 0.

To begin, we express 𝑧1, 𝑧2 in terms of 𝑥1, 𝑥2, 𝑥3. Observe that𝑥1 + 𝜔2𝑥2 + 𝜔𝑥3 = −(1 + 𝜔2 + 𝜔)𝑏3 + 3𝑧1 + (1 + 𝜔 +𝜔2)𝑧2 .
As𝜔 is a root of 𝑥3−1 = (𝑥−1)(𝑥2+𝑥+1), we see that 1+𝜔+𝜔2 = 0,
so 𝑥1 + 𝜔2𝑥2 + 𝜔𝑥3 = 3𝑧1 or 𝑧1 = 13(𝑥1 + 𝜔2𝑥2 + 𝜔𝑥3). Similarly, we
have 𝑧2 = 13(𝑥1+𝜔𝑥2+𝜔2𝑥3). This shows that the solutions 𝑧1, 𝑧2 to
the cubic resolvent equation can be expressed in terms of the roots
of the monic cubic polynomial.

Ⅽopyright © 2026 by Gregory G. Smith
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Better yet, the six roots of the cubic resolvent are 𝑧1, 𝑧2, 𝜔𝑧1, 𝜔𝑧2,𝜔2𝑧1, and 𝜔2𝑧2. Ɪn terms of 𝑥1, 𝑥2, 𝑥3, these roots are𝑧1 = 13(𝑥1 + 𝜔2𝑥2 + 𝜔𝑥3) , 𝑧2 = 13(𝑥1 + 𝜔2𝑥3 + 𝜔𝑥2) ,𝜔𝑧1 = 13(𝑥2 + 𝜔2𝑥3 + 𝜔𝑥1) , 𝜔𝑧2 = 13(𝑥3 + 𝜔2𝑥2 + 𝜔𝑥1) ,𝜔2𝑧1 = 13(𝑥3 + 𝜔2𝑥1 + 𝜔𝑥2) , 𝜔2𝑧2 = 13(𝑥2 + 𝜔2𝑥1 + 𝜔𝑥3) .
The solutions to the cubic resolvent equation are simply obtained
from 𝑧1 by permuting the roots 𝑥1, 𝑥2, 𝑥3.

The cubic resolvent has degree 6
because the symmetric group𝔖3 has
order 6.

To get an even better understanding, set𝐷∶= 𝑞2 + 4𝑝2/27, so
𝑧1 = 3√12 (−𝑞 + √𝐷) and 𝑧2 = 3√12 (−𝑞 − √𝐷) .

We claim that 𝐷 can be expressed in terms of the roots 𝑥1, 𝑥2, 𝑥3.
Observe that𝑧31 − 𝑧32 = 12(−𝑞 + √𝐷) − 12(−𝑞 − √𝐷) = √𝐷 .
On the other hand, combining the equations𝑧1 − 𝑧2 = 13(𝑥1 + 𝜔2𝑥2 + 𝜔𝑥3) − 13(𝑥1 + 𝜔2𝑥3 + 𝜔𝑥2)= 13(𝜔2 − 𝜔)(𝑥2 − 𝑥3) = −i√3(𝑥2 − 𝑥3) ,𝑧1 − 𝜔𝑧2 = 13(𝑥1 + 𝜔2𝑥2 + 𝜔𝑥3) − 13(𝑥3 + 𝜔2𝑥2 + 𝜔𝑥1)= 13(1 − 𝜔)(𝑥1 − 𝑥3) = i𝜔2√3 (𝑥1 − 𝑥3) ,𝑧1 − 𝜔3𝑧2 = 13(𝑥1 + 𝜔2𝑥2 + 𝜔𝑥3) − 13(𝑥2 + 𝜔2𝑥1 + 𝜔𝑥3)= 13(1 − 𝜔2)(𝑥1 − 𝑥2) = −i𝜔√3 (𝑥1 − 𝑥2) ,
with the factorization 𝑧31 − 𝑧32 = (𝑧1 − 𝑧2)(𝑧1 −𝜔𝑧2)(𝑧1 −𝜔2𝑧2) gives√𝐷 = − i3√3(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)(𝑥2 − 𝑥3) .
Squaring this formula yields

𝐷∶= 𝑞2 + 4𝑝327 = − 127(𝑥1 − 𝑥2)2(𝑥1 − 𝑥3)2(𝑥2 − 𝑥3)2 .
The discriminant of 𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 is defined to beΔ∶= (𝑥1 − 𝑥2)2(𝑥1 − 𝑥3)2(𝑥2 − 𝑥3)2 .
Ɪn this notation, we have 𝑞2 + 4𝑝3/27 = −Δ/27 and

𝑧1 = 3√√√√12 (−𝑞 +√−Δ27 ) and 𝑧2 = 3√√√√12 (−𝑞 −√−Δ27 ) .
Furthermore, the equations

The discriminant Δ is unchanged by
permutations of the roots 𝑥1, 𝑥2, 𝑥3.

Δ∶= −4𝑝3 − 27𝑞2 , 𝑝 = −𝑏33 + 𝑐 , 𝑞 = 2𝑏327 − 𝑏𝑐3 + 𝑑 ,
imply that Δ = 𝑏2𝑐2 + 18𝑏𝑐𝑑 − 4𝑐3 − 4𝑏3𝑑 − 27𝑑2 .
We will see that any symmetric polynomial in 𝑥1, 𝑥2, 𝑥3 can always
be expressed in terms of the coefficients𝑏 = −(𝑥1 + 𝑥2 + 𝑥3) , 𝑐 = 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3 , 𝑑 = −𝑥1𝑥2𝑥3 .

Ⅽopyright © 2026 by Gregory G. Smith
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0.2 Ⅽubic Equations over the Real Numbers
What happens when the cubic equation has real coefficients? The
discriminant of the reduced cubic 𝑦3 + 𝑝𝑦 + 𝑞 isΔ∶= (𝑦1 − 𝑦2)2(𝑦1 − 𝑦3)2(𝑦2 − 𝑦3)2 = −4𝑝3 − 27𝑞2 .
The sign of the discriminant determines how many roots are real.

0.2.0 Theorem. When the polynomial 𝑦3 +𝑝𝑦+𝑞 ∈ ℝ[𝑦] has distinct
roots, there are two possibilities:
(positive) The roots of 𝑦3 + 𝑝𝑦 + 𝑞 are all real if and only if Δ > 0.
(negative) The polynomial 𝑦3 + 𝑝𝑦 + 𝑞 has only one real roots (and the

other two roots are complex conjugates) if and only if Δ < 0.
Proof. Suppose that 𝑦1 is a root of the polynomial 𝑦3 + 𝑝𝑦 + 𝑞. Ɪt
follows that0 = 0 = 𝑦31 + 𝑝𝑦1 + 𝑞 = (𝑦1)3 + 𝑝𝑦1 + 𝑞 = (𝑦1)3 + 𝑝𝑦1 + 𝑞 ,
which implies that the complex conjugate 𝑦1 is also a root.

Ɪn other words, the roots of a
polynomial with real coefficients are
either real or come in complex
conjugate pairs.

When the roots 𝑦1, 𝑦2, 𝑦3 are all real and distinct, the definitionΔ∶= (𝑦1 −𝑦2)2(𝑦1 −𝑦3)2(𝑦2 −𝑦3)2 shows that Δ > 0. When the roots
are not all real, one must be real root, say 𝑦1, and the other form a
complex conjugate pair, say 𝑦2 and 𝑦2. Setting 𝑦2 = 𝑢 + i𝑣 where𝑢, 𝑣 ∈ ℝ, we obtainΔ = (𝑦1 − (𝑢 + i𝑣))2(𝑦1 − (𝑢 − i𝑣))2((𝑢 + i𝑣) − (𝑢 − i𝑣))2= ((𝑦1 − 𝑢) − i𝑣)2((𝑦1 − 𝑢) + i𝑣)2(2i𝑣)2 = −4𝑣2((𝑦1 − 𝑢)2 − 𝑣2)2 .
Ɪt follows that Δ < 0 when there is only one real root.
To relate this theorem to Ⅽardano’s formulas, recall that𝑦1 = 𝑧1 + 𝑧2 , 𝑦2 = 𝜔𝑧1 + 𝜔2𝑧2 , 𝑦3 = 𝜔2𝑧1 + 𝜔𝑧2 ,

where the cube roots

𝑧1 ∶= 3√12(−𝑞 +√𝑞2 + 4𝑝327 ) and 𝑧2 ∶= 3√12(−𝑞 −√𝑞2 + 4𝑝327 ) .
are chosen so that 𝑧1𝑧2 = −𝑝/3.
Suppose that Δ < 0. The theorem implies that 𝑦3 + 𝑝𝑦 + 𝑞 = 0

has precisely one real root and Δ = −4𝑝3 − 27𝑞2 < 0. Hence, the
square root √𝑞2 + 4𝑝3/27 is real, which means that we can take 𝑧1
to be the unique real cube root. The equation 𝑧1𝑧2 = −𝑝/3 implies
that 𝑧2 is also the real cube root. Ɪt follows that

𝑦1 = 3√12(−𝑞 +√𝑞2 + 4𝑝327 ) + 3√12(−𝑞 −√𝑞2 + 4𝑝327 )
expresses the real root of reduced cubic in terms for real radicals.
Since 𝜔2 = 𝜔, we have a complete understanding of how Ⅽardano’s
formulas work when the discriminant is negative.
The case Δ > 0 is different. Since Δ = −4𝑝3 −27𝑞2 > 0, one value

of the square root √𝑞2 + 4𝑝3/27 is
√𝑞2 + 4𝑝327 = √−Δ27 = i√Δ27 .

Ⅽopyright © 2026 by Gregory G. Smith
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Using this, the cube roots are

𝑧1 ∶= 3√√√√12(−𝑞 + i√Δ27) and 𝑧2 ∶= 3√√√√12(−𝑞 − i√Δ27) .
Both roots 𝑧1 and 𝑧2 are nonreal complex numbers when Δ > 0.
Nevertheless, the equation 𝑧1𝑧2 = −𝑝/3 guarantees that 𝑧2 = 𝑧1.
Hence, Ⅽardano’s formulas become𝑦1 = 𝑧1 + 𝑧1 , 𝑦2 = 𝜔𝑧1 + 𝜔2𝑧1 , 𝑦3 = 𝜔2𝑧1 + 𝜔𝑧1 .
The root 𝑦1 is real because it is the sum of a complex number and
its conjugate. Since 𝜔2 = 𝜔, the roots 𝑦2 and 𝑦3 are also real. We
no longer have a canonical choice of 𝑧1; it is just one cube root of
a complex number. Ⅽuriously, we are using complex numbers to
express the real roots of a real polynomial.

0.2.1 Problem (R. Bombelli 1550). Find the roots of 𝑦3 − 15𝑦 − 4. See Book 2 of R. Bombelli, Ⅼ’algebra.
Prima edizione integrale. Ɪntroduzione di
Umberto Forti. Prefazione di E.
Bortolotti., Biblioteca scientifica
Feltrinelli. 13. Ⅿilano: Giangiacomo
Feltrinelli Editore. lxiii, 671 p. (1966).

Solution. The discriminant is Δ = −4(−15)3 − 27(−4)2 = 13068 > 0,
so all three roots are real. Since

3√√√12 (4 + i√1306827 ) = 3√2 + 11i ,
and (2 + i)3 = 8 + 3(4)i− 3(2) − i = 2 + 11i, choose 𝑧1 = 2 + i. Thus,
Ⅽardano’s formulas give𝑦1 = (2 + i) + (2 − i) = 4 ,𝑦2 = 12((−1 + i√3)(2 − i) + (−1 − i√3)(2 + i)) = −2 + √3 ,𝑦3 = 12((−1 − i√3)(2 − i) + (−1 + i√3)(2 + i)) = −2 − √3 .
There is a ‘purely real’ solution provide ones use trigonometric

functions rather than radicals.

F. Ⅴiète, Fontenaensis aequationum
recognitione et emendatione tractatus
duo, Paris, France (1615).

0.2.2 Theorem (Ⅴiète 1615). Ⅼet 𝑦3+𝑝𝑦+𝑞 be a cubic polynomial with
real coefficients. When the discriminant is positive, we have 𝑝 < 0 and
the roots are

𝑦1 = 2√−𝑝3 cos(𝜃) ,
𝑦2 = 2√−𝑝3 cos(𝜃 + 2𝜋3 ) ,
𝑦3 = 2√−𝑝3 cos(𝜃 + 4𝜋3 ) ,

where the real number 𝜃 is defined by
𝜃∶= 13 arccos ( 3√3𝑞2𝑝√−𝑝) . !
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