

0 Cubic Equations

Copyright © 2026, Gregory G. Smith
Last Updated: 2026-01-04

Galois theory originated in studying roots of polynomials. Before developing the general theory, this chapter focuses on a special case.

0.0 Cardano's Formulas

What are the solutions to a cubic equation? Consider

$$ax^3 + bx^2 + cx + d = 0 \quad \text{for all } a, b, c, d \in \mathbb{C}, \text{ where } a \neq 0.$$

Rewrite this equation as

$$0 = ax^3 + bx^2 + cx + d = a(x^3 + \frac{b}{a}x^2 + \frac{c}{a}x + \frac{d}{a}).$$

Since $a \neq 0$, it follows that $x^3 + \frac{b}{a}x^2 + \frac{c}{a}x + \frac{d}{a} = 0$. Hence, reducing to the monic case has no effect on the roots. In other words, we may assume without loss of generality that $a = 1$.

To eliminate the quadratic term, set $x := y - \frac{b}{3}$. The binomial theorem gives

$$\begin{aligned} x^2 &= (y - \frac{b}{3})^2 = y^2 - 2y(\frac{b}{3}) + (\frac{b}{3})^2 = y^2 - \frac{2b}{3}y + \frac{b^2}{9}, \\ x^3 &= (y - \frac{b}{3})^3 = y^3 - 3y^2(\frac{b}{3}) + 3y(\frac{b}{3})^2 - (\frac{b}{3})^3 = y^3 - by^2 + \frac{b^2}{3}y - \frac{b^3}{27}. \end{aligned}$$

It follows that

$$\begin{aligned} 0 &= x^3 + bx^2 + cx + d \\ &= (y^3 - by^2 + \frac{b^2}{3}y - \frac{b^3}{27}) + b(y^2 - \frac{2b}{3}y + \frac{b^2}{9}) + c(y - \frac{b}{3}) + d \\ &= y^3 + (-\frac{b^2}{3} + c)y + (\frac{2b^3}{27} - \frac{bc}{3} + d). \end{aligned}$$

Let $p := -\frac{b^2}{3} + c$ and $q := \frac{2b^3}{27} - \frac{bc}{3} + d$. Given the roots of the *reduced cubic* $y^3 + py + q$, the roots of the monic cubic $x^3 + bx^2 + cx + d$ are simply translations by $-b/3$.

To solve the reduced cubic, we exploit the nonlinear substitution $y := z - \frac{p}{3z}$. The binomial theorem implies that

$$\begin{aligned} y^3 &= z^3 - 3z^2(\frac{p}{3z}) + 3z(\frac{p}{3z})^2 + (\frac{p}{3z})^3 = z^3 - pz + \frac{p^2}{3z} - \frac{p^3}{27z^3}, \\ y^3 + py + q &= (z^3 - pz + \frac{p^2}{3z} - \frac{p^3}{27z^3}) + p(z - \frac{p}{3z}) + q = z^3 - \frac{p^3}{27z^3} + q. \end{aligned}$$

Multiplying by z^3 , we deduce that $y^3 + py + q = 0$ is equivalent to the *cubic resolvent* equation $z^6 + qz^3 - p^3/27 = 0$. Since this cubic resolvent can be rewritten as $(z^3)^2 + q(z^3) - p^3/27 = 0$, the quadratic formula gives

$$z^3 = \frac{1}{2} \left(-q \pm \sqrt{q^2 + \frac{4p^3}{27}} \right) \quad \text{and} \quad z = \sqrt[3]{\frac{1}{2} \left(-q \pm \sqrt{q^2 + \frac{4p^3}{27}} \right)}.$$

Back substitution gives a root of the reduced cubic $y^3 + py + q = 0$ and the monic cubic $x^3 + bx^2 + cx + d = 0$.

However, before we can claim to have solved the cubic equation, there are several questions that need to be answered.

- (existence) We essentially assumed that a solution exists. What justifies this assumption?
- (multiplicity) A (generic) cubic equation should have three roots, but the cubic resolvent has degree 6. Why?

The quadratic formula states that the solutions of $ax^2 + bx + c = 0$ for all $a, b, c \in \mathbb{C}$, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

This substitution generalizes ‘completing the square’ for quadratic polynomials.

($z = 0$) The substitution $y := z - \frac{p}{3z}$ assumes $z \neq 0$. What happens when $z = 0$?

(roots) How does one describe square roots and cube roots of complex numbers?

We postpone the first three and concentrate on the last question.

Assume that $p \neq 0$ in $y^3 + py + q = 0$. For any positive $n \in \mathbb{N}$, every nonzero complex number has n distinct n th roots. The cube root symbol denotes any of the three cube roots of the complex number under the radical. To understand the cube roots, recall that

$$\omega = \exp(2\pi i/3) = \frac{-1 + i\sqrt{3}}{2} \in \mathbb{C}$$

is a third root of 1. The other cube roots are obtained by multiplying by ω and ω^2 .

Let $\sqrt{q^2 + 4p^3/27}$ denote a fixed square root of $q^2 + 4p^3/27 \in \mathbb{C}$. With this choice of square root, let

$$z_1 := \sqrt[3]{\frac{1}{2} \left(-q + \sqrt{q^2 + \frac{4p^3}{27}} \right)}$$

denote a fixed cube root of $\frac{1}{2}(-q + \sqrt{q^2 + 4p^3/27}) \in \mathbb{C}$. The other cube roots are again obtained by multiplying by ω and ω^2 . Since $p \neq 0$, it follows that $z_1 \neq 0$ and z_1 is a root of the cubic resolvent. Setting $z_2 := -p/3z_1$, we see that $y_1 := z_1 + z_2 = z_1 - p/3z_1$ is a root of the reduced cubic $y^3 + py + q$.

To understand z_2 , observe that $z_1^3 z_2^3 = z_1^3 (-p/3z_1)^3 = -p^3/27$ and

$$\begin{aligned} z_1^3 \left[\frac{1}{2} \left(-q - \sqrt{q^2 + \frac{4p^3}{27}} \right) \right] \\ = \left[\frac{1}{2} \left(-q + \sqrt{q^2 + \frac{4p^3}{27}} \right) \right] \left[\frac{1}{2} \left(-q - \sqrt{q^2 + \frac{4p^3}{27}} \right) \right] = -\frac{p^3}{27}. \end{aligned}$$

Since $z_1 \neq 0$, these formulas imply that $z_2^3 = \frac{1}{2}(-q - \sqrt{q^2 + 4p^3/27})$. Hence, we deduce that

$$z_1 = \sqrt[3]{\frac{1}{2} \left(-q + \sqrt{q^2 + \frac{4p^3}{27}} \right)} \quad \text{and} \quad z_2 = \sqrt[3]{\frac{1}{2} \left(-q - \sqrt{q^2 + \frac{4p^3}{27}} \right)}$$

are cube roots such that their product is $-p/3$. It follows that the three roots of $y^3 + py + q = 0$ are given by

$$\begin{aligned} y_1 &= \sqrt[3]{\frac{1}{2} \left(-q + \sqrt{q^2 + \frac{4p^3}{27}} \right)} + \sqrt[3]{\frac{1}{2} \left(-q - \sqrt{q^2 + \frac{4p^3}{27}} \right)}, \\ y_2 &= \omega \sqrt[3]{\frac{1}{2} \left(-q + \sqrt{q^2 + \frac{4p^3}{27}} \right)} + \omega^2 \sqrt[3]{\frac{1}{2} \left(-q - \sqrt{q^2 + \frac{4p^3}{27}} \right)}, \\ y_3 &= \omega^2 \sqrt[3]{\frac{1}{2} \left(-q + \sqrt{q^2 + \frac{4p^3}{27}} \right)} + \omega \sqrt[3]{\frac{1}{2} \left(-q - \sqrt{q^2 + \frac{4p^3}{27}} \right)}. \end{aligned}$$

These are *Cardano's formulas* for the roots of the reduced cubic.

The \pm in the quadratic formula indicates that a nonzero complex number has two square roots.

One verifies that $\omega^3 = 1$ and $\omega^2 = \exp(4\pi i/3) = \frac{-1 - i\sqrt{3}}{2}$.

Gerolamo Cardano (1501–1576) is credited with publishing the first formula for solving cubic equations, attributing it to **Scipione del Ferro** (1465–1526) and **Niccolò Fontana Tartaglia** (1500–1557); see G. Cardano, *Artis magnae sive de regulis algebraicis*, *liber unus*, 2011 Italian and English translation by M. Tamborini, (1570).

0.1 Permutations of the Roots

How are solutions of the cubic resolvent $z^6 + qz^3 - p^3/27 = 0$ related to roots of the monic cubic $x^3 + bx^2 + cx + d$?

0.1.0 Problem. Use Cardano's formulas to solve $y^3 + 3y + 1 = 0$.

Solution. Since the product of the real cube roots

$$\sqrt[3]{\frac{1}{2}(-1 + \sqrt{5})} \quad \text{and} \quad \sqrt[3]{\frac{1}{2}(-1 - \sqrt{5})}$$

is $-1 = -p/3$, Cardano's formula shows that the roots are

$$\begin{aligned} y_1 &= \sqrt[3]{\frac{1}{2}(-1 + \sqrt{5})} + \sqrt[3]{\frac{1}{2}(-1 - \sqrt{5})}, \\ y_2 &= \omega \sqrt[3]{\frac{1}{2}(-1 + \sqrt{5})} + \omega^2 \sqrt[3]{\frac{1}{2}(-1 - \sqrt{5})}, \\ y_3 &= \omega^2 \sqrt[3]{\frac{1}{2}(-1 + \sqrt{5})} + \omega \sqrt[3]{\frac{1}{2}(-1 - \sqrt{5})}. \end{aligned} \quad \square$$

0.1.1 Problem. Use Cardano's formulas to solve $y^3 - 3y = 0$.

Solution. Since

$$\sqrt[3]{\frac{1}{2}\left(0 + \sqrt{0 + \frac{4(-3)^3}{27}}\right)} = \sqrt[3]{i}$$

and $(-i)^3 = i$, set $z_1 := -i$, so $z_2 := -p/3z_1 = i$. Thus, Cardano's formulas give the roots $y_1 = -i + i = 0$, $y_2 = \omega(-i) + \omega^2(i) = \sqrt{3}$, and $y_3 = \omega^2(-i) + \omega(i) = -\sqrt{3}$. \square

Although Cardano's formulas only apply to the reduced cubic, we obtain formulas for the roots of an arbitrary monic cubic as follows. When z_1 and z_2 are the cube roots in Cardano's formulas, the roots of $x^3 + bx^2 + cx + d$ are

$$\begin{aligned} x_1 &:= -\frac{b}{3} + z_1 + z_2, \\ x_2 &:= -\frac{b}{3} + \omega z_1 + \omega^2 z_2, \\ x_3 &:= -\frac{b}{3} + \omega^2 z_1 + \omega z_2, \end{aligned}$$

where z_1 and z_2 satisfy $z_1 z_2 = -p/3$. We also know that z_1 is a root of the cubic resolvent. Our short-term goal is to understand the relationship between x_1, x_2, x_3 and z_1, z_2 .

To begin, we express z_1, z_2 in terms of x_1, x_2, x_3 . Observe that

$$x_1 + \omega^2 x_2 + \omega x_3 = -(1 + \omega^2 + \omega) \frac{b}{3} + 3z_1 + (1 + \omega + \omega^2)z_2.$$

As ω is a root of $x^3 - 1 = (x - 1)(x^2 + x + 1)$, we see that $1 + \omega + \omega^2 = 0$, so $x_1 + \omega^2 x_2 + \omega x_3 = 3z_1$ or $z_1 = \frac{1}{3}(x_1 + \omega^2 x_2 + \omega x_3)$. Similarly, we have $z_2 = \frac{1}{3}(x_1 + \omega x_2 + \omega^2 x_3)$. This shows that the solutions z_1, z_2 to the cubic resolvent equation can be expressed in terms of the roots of the monic cubic polynomial.

Recall that

$$\omega = \exp(2\pi i/3) = \frac{-1+i\sqrt{3}}{3} \in \mathbb{C}.$$

Since $\omega^2 = \bar{\omega}$, the roots y_2 and y_3 are complex conjugates.

Obviously, we have
 $y^3 - 3y = y(y - \sqrt{3})(y + \sqrt{3})$.

The surprise is that Cardano's formula expresses the real roots of $y^3 - 3y$ in terms of complex numbers.

Our derivation assumed $p \neq 0$, but one verifies that these formulas give the correct roots even when $p = 0$.

Better yet, the six roots of the cubic resolvent are $z_1, z_2, \omega z_1, \omega z_2, \omega^2 z_1$, and $\omega^2 z_2$. In terms of x_1, x_2, x_3 , these roots are

$$\begin{aligned} z_1 &= \frac{1}{3}(x_1 + \omega^2 x_2 + \omega x_3), & z_2 &= \frac{1}{3}(x_1 + \omega^2 x_3 + \omega x_2), \\ \omega z_1 &= \frac{1}{3}(x_2 + \omega^2 x_3 + \omega x_1), & \omega z_2 &= \frac{1}{3}(x_3 + \omega^2 x_2 + \omega x_1), \\ \omega^2 z_1 &= \frac{1}{3}(x_3 + \omega^2 x_1 + \omega x_2), & \omega^2 z_2 &= \frac{1}{3}(x_2 + \omega^2 x_1 + \omega x_3). \end{aligned}$$

The solutions to the cubic resolvent equation are simply obtained from z_1 by permuting the roots x_1, x_2, x_3 .

To get an even better understanding, set $D := q^2 + 4p^3/27$, so

$$z_1 = \sqrt[3]{\frac{1}{2}(-q + \sqrt{D})} \quad \text{and} \quad z_2 = \sqrt[3]{\frac{1}{2}(-q - \sqrt{D})}.$$

We claim that D can be expressed in terms of the roots x_1, x_2, x_3 .

Observe that

$$z_1^3 - z_2^3 = \frac{1}{2}(-q + \sqrt{D}) - \frac{1}{2}(-q - \sqrt{D}) = \sqrt{D}.$$

On the other hand, combining the equations

$$\begin{aligned} z_1 - z_2 &= \frac{1}{3}(x_1 + \omega^2 x_2 + \omega x_3) - \frac{1}{3}(x_1 + \omega^2 x_3 + \omega x_2) \\ &= \frac{1}{3}(\omega^2 - \omega)(x_2 - x_3) = \frac{i}{\sqrt{3}}(x_2 - x_3), \\ z_1 - \omega z_2 &= \frac{1}{3}(x_1 + \omega^2 x_2 + \omega x_3) - \frac{1}{3}(x_3 + \omega^2 x_2 + \omega x_1) \\ &= \frac{1}{3}(1 - \omega)(x_1 - x_3) = \frac{i\omega^2}{\sqrt{3}}(x_1 - x_3), \\ z_1 - \omega^2 z_2 &= \frac{1}{3}(x_1 + \omega^2 x_2 + \omega x_3) - \frac{1}{3}(x_2 + \omega^2 x_1 + \omega x_3) \\ &= \frac{1}{3}(1 - \omega^2)(x_1 - x_2) = \frac{-i\omega}{\sqrt{3}}(x_1 - x_2), \end{aligned}$$

with the factorization $z_1^3 - z_2^3 = (z_1 - z_2)(z_1 - \omega z_2)(z_1 - \omega^2 z_2)$ gives

$$\sqrt{D} = -\frac{i}{3\sqrt{3}}(x_1 - x_2)(x_1 - x_3)(x_2 - x_3).$$

Squaring this formula yields

$$D := q^2 + \frac{4p^3}{27} = -\frac{1}{27}(x_1 - x_2)^2(x_1 - x_3)^2(x_2 - x_3)^2.$$

The *discriminant* of $x^3 + bx^2 + cx + d$ is defined to be

$$\Delta := (x_1 - x_2)^2(x_1 - x_3)^2(x_2 - x_3)^2.$$

In this notation, we have $q^2 + 4p^3/27 = -\Delta/27$ and

$$z_1 = \sqrt[3]{\frac{1}{2}\left(-q + \sqrt{\frac{-\Delta}{27}}\right)} \quad \text{and} \quad z_2 = \sqrt[3]{\frac{1}{2}\left(-q - \sqrt{\frac{-\Delta}{27}}\right)}.$$

Furthermore, the equations

$$\Delta := -4p^3 - 27q^2, \quad p = -\frac{b^3}{3} + c, \quad q = \frac{2b^3}{27} - \frac{bc}{3} + d,$$

imply that

$$\Delta = b^2c^2 + 18bcd - 4c^3 - 4b^3d - 27d^2.$$

We will see that any symmetric polynomial in x_1, x_2, x_3 can always be expressed in terms of the coefficients

$$b = -(x_1 + x_2 + x_3), \quad c = x_1x_2 + x_1x_3 + x_2x_3, \quad d = -x_1x_2x_3.$$

The cubic resolvent has degree 6 because the symmetric group \mathfrak{S}_3 has order 6.

The discriminant Δ is unchanged by permutations of the roots x_1, x_2, x_3 .

0.2 Cubic Equations over the Real Numbers

What happens when the cubic equation has real coefficients? The discriminant of the reduced cubic $y^3 + py + q$ is

$$\Delta := (y_1 - y_2)^2(y_1 - y_3)^2(y_2 - y_3)^2 = -4p^3 - 27q^2.$$

The sign of the discriminant determines how many roots are real.

0.2.0 Theorem. *When the polynomial $y^3 + py + q \in \mathbb{R}[y]$ has distinct roots, there are two possibilities:*

- (positive) *The roots of $y^3 + py + q$ are all real if and only if $\Delta > 0$.*
- (negative) *The polynomial $y^3 + py + q$ has only one real root (and the other two roots are complex conjugates) if and only if $\Delta < 0$.*

Proof. Suppose that y_1 is a root of the polynomial $y^3 + py + q$. It follows that

$$0 = \overline{0} = \overline{y_1^3 + py_1 + q} = (\overline{y_1})^3 + \overline{py_1} + \overline{q} = (\overline{y_1})^3 + p\overline{y_1} + q,$$

which implies that the complex conjugate $\overline{y_1}$ is also a root.

When the roots y_1, y_2, y_3 are all real and distinct, the definition $\Delta := (y_1 - y_2)^2(y_1 - y_3)^2(y_2 - y_3)^2$ shows that $\Delta > 0$. When the roots are not all real, one must be real root, say y_1 , and the other form a complex conjugate pair, say y_2 and $\overline{y_2}$. Setting $y_2 = u + iv$ where $u, v \in \mathbb{R}$, we obtain

$$\begin{aligned} \Delta &= (y_1 - (u + iv))^2(y_1 - (u - iv))^2((u + iv) - (u - iv))^2 \\ &= ((y_1 - u) - iv)^2((y_1 - u) + iv)^2(2iv)^2 = -4v^2((y_1 - u)^2 - v^2)^2. \end{aligned}$$

It follows that $\Delta < 0$ when there is only one real root. \square

In other words, the roots of a polynomial with real coefficients are either real or come in complex conjugate pairs.

To relate this theorem to Cardano's formulas, recall that

$$y_1 = z_1 + z_2, \quad y_2 = \omega z_1 + \omega^2 z_2, \quad y_3 = \omega^2 z_1 + \omega z_2,$$

where the cube roots

$$z_1 := \sqrt[3]{\frac{1}{2}\left(-q + \sqrt{q^2 + \frac{4p^3}{27}}\right)} \quad \text{and} \quad z_2 := \sqrt[3]{\frac{1}{2}\left(-q - \sqrt{q^2 + \frac{4p^3}{27}}\right)}.$$

are chosen so that $z_1 z_2 = -p/3$.

Suppose that $\Delta < 0$. The theorem implies that $y^3 + py + q = 0$ has precisely one real root and $\Delta = -4p^3 - 27q^2 < 0$. Hence, the square root $\sqrt{q^2 + 4p^3/27}$ is real, which means that we can take z_1 to be the unique real cube root. The equation $z_1 z_2 = -p/3$ implies that z_2 is also the real cube root. It follows that

$$y_1 = \sqrt[3]{\frac{1}{2}\left(-q + \sqrt{q^2 + \frac{4p^3}{27}}\right)} + \sqrt[3]{\frac{1}{2}\left(-q - \sqrt{q^2 + \frac{4p^3}{27}}\right)}$$

expresses the real root of reduced cubic in terms for real radicals. Since $\omega^2 = \overline{\omega}$, we have a complete understanding of how Cardano's formulas work when the discriminant is negative.

The case $\Delta > 0$ is different. Since $\Delta = -4p^3 - 27q^2 > 0$, one value of the square root $\sqrt{q^2 + 4p^3/27}$ is

$$\sqrt{q^2 + \frac{4p^3}{27}} = \sqrt{\frac{-\Delta}{27}} = i\sqrt{\frac{\Delta}{27}}.$$

Using this, the cube roots are

$$z_1 := \sqrt[3]{\frac{1}{2}\left(-q + i\sqrt{\frac{\Delta}{27}}\right)} \quad \text{and} \quad z_2 := \sqrt[3]{\frac{1}{2}\left(-q - i\sqrt{\frac{\Delta}{27}}\right)}.$$

Both roots z_1 and z_2 are nonreal complex numbers when $\Delta > 0$. Nevertheless, the equation $z_1 z_2 = -p/3$ guarantees that $z_2 = \overline{z_1}$. Hence, Cardano's formulas become

$$y_1 = z_1 + \overline{z_1}, \quad y_2 = \omega z_1 + \omega^2 \overline{z_1}, \quad y_3 = \omega^2 z_1 + \omega \overline{z_1}.$$

The root y_1 is real because it is the sum of a complex number and its conjugate. Since $\omega^2 = \overline{\omega}$, the roots y_2 and y_3 are also real. We no longer have a canonical choice of z_1 ; it is just one cube root of a complex number. Curiously, we are using complex numbers to express the real roots of a real polynomial.

0.2.1 Problem (R. Bombelli 1550). Find the roots of $y^3 - 15y - 4$.

Solution. The discriminant is $\Delta = -4(-15)^3 - 27(-4)^2 = 13068 > 0$, so all three roots are real. Since

$$\sqrt[3]{\frac{1}{2}\left(4 + i\sqrt{\frac{13068}{27}}\right)} = \sqrt[3]{2 + 11i},$$

and $(2 + i)^3 = 8 + 3(4)i - 3(2) - i = 2 + 11i$, choose $z_1 = 2 + i$. Thus, Cardano's formulas give

$$\begin{aligned} y_1 &= (2 + i) + (2 - i) = 4, \\ y_2 &= \frac{1}{2}((-1 + i\sqrt{3})(2 - i) + (-1 - i\sqrt{3})(2 + i)) = -2 + \sqrt{3}, \\ y_3 &= \frac{1}{2}((-1 - i\sqrt{3})(2 - i) + (-1 + i\sqrt{3})(2 + i)) = -2 - \sqrt{3}. \quad \square \end{aligned}$$

There is a 'purely real' solution provide ones use trigonometric functions rather than radicals.

0.2.2 Theorem (Viète 1615). *Let $y^3 + py + q$ be a cubic polynomial with real coefficients. When the discriminant is positive, we have $p < 0$ and the roots are*

$$\begin{aligned} y_1 &= 2\sqrt{\frac{-p}{3}} \cos(\theta), \\ y_2 &= 2\sqrt{\frac{-p}{3}} \cos(\theta + \frac{2\pi}{3}), \\ y_3 &= 2\sqrt{\frac{-p}{3}} \cos(\theta + \frac{4\pi}{3}), \end{aligned}$$

where the real number θ is defined by

$$\theta := \frac{1}{3} \arccos\left(\frac{3\sqrt{3}q}{2p\sqrt{-p}}\right).$$

See Book 2 of R. Bombelli, *L'algebra. Prima edizione integrale. Introduzione di Umberto Forti. Prefazione di E. Bortolotti.*, Biblioteca scientifica Feltrinelli. 13. Milano: Giangiacomo Feltrinelli Editore. Ixiii, 671 p. (1966).

F. Viète, *Fontenensis aequationum recognitione et emendatione tractatus duo*, Paris, France (1615).