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Symmetric polynomials are fundamental to Galois theory because
they link univariate polynomials with permutations.

1.0 Polynomials in Several Variables
What is the polynomial ring in 𝑛 variables? Fix 𝑛 ∈ ℕ. A polynomial
in the indeterminates 𝑥1, 𝑥2, … , 𝑥𝑛 with coefficients in a field 𝐾 is a
finite sum of terms, which are expressions of the form

𝑐𝑥𝑢11 𝑥𝑢22 ⋯𝑥𝑢𝑛𝑛 ∶= 𝑐 𝑛∏𝑖=1 𝑥𝑢𝑖𝑖 where 𝑐 ∈ 𝐾 and 𝑢𝑖 ∈ ℕ for all 1 ⩽ 𝑖 ⩽ 𝑛.

For all 𝑢∶= (𝑢1, 𝑢2, … , 𝑢𝑛) ∈ ℕ𝑛, the product 𝑥𝑢 ∶= 𝑥𝑢11 𝑥𝑢22 ⋯𝑥𝑢𝑛𝑛 is a
monomial. A term 𝑐𝑥𝑢 is nonzero if its coefficient 𝑐 is nonzero. The
total degree of a nonzero term 𝑐𝑥𝑢 is ‖𝑢‖1 = 𝑢1 + 𝑢2 +⋯+ 𝑢𝑛 ∈ ℕ.

Richard Dedekind introduced the
German word “Körper” (meaning
“body” or “corpus”) for a set of real or
complex numbers that is closed under
the arithmetic operations; see
L. Dirichlet, P. Gustav, and
R. Dedekind, Vorlesungen über
Zahlentheorie, (1879). The English term
“field” first appears in E.H. Moore, A
doubly‑infinite system of simple groups,
Bull. New York Math. Soc. 3 (1893)
73–78.

The constant 1∶= 𝑥01𝑥02 ⋯𝑥0𝑛 is a
monomial.

The set of all polynomials in 𝑥1, 𝑥2, … , 𝑥𝑛 with coefficients in the
field 𝐾 is denoted by 𝐾[𝑥1, 𝑥2, … , 𝑥𝑛]; it forms a commutative ring
(and a𝐾‑algebra) under the standard addition and multiplication of
polynomials. Given a nonzero 𝑓 ∈ 𝐾[𝑥1, 𝑥2, … , 𝑥𝑛], the total degree
deg(𝑓) is the maximum of the total degrees of the nonzero terms in
the polynomial 𝑓. Since 𝐾 is a domain, one verifies that

deg(𝑓𝑔) = deg(𝑓) + deg(𝑔)
for all nonzero 𝑓, 𝑔 ∈ 𝐾[𝑥1, 𝑥2, … , 𝑥𝑛]. As a consequence, the ring𝐾[𝑥1, 𝑥2, … , 𝑥𝑛] is also a domain. Since 𝐾[𝑥1, 𝑥2, … , 𝑥𝑛] is a domain,
its field of fractions is𝐾(𝑥1, 𝑥2, … , 𝑥𝑛)∶= 𝐾[𝑥1, 𝑥2, … , 𝑥𝑛]⟨0⟩= {𝑓𝑔 ||| 𝑓, 𝑔 ∈ 𝐾[𝑥1, 𝑥2, … , 𝑥𝑛] such that 𝑔 ≠ 0} .
This larger 𝐾‑algebra is the field of rational functions in 𝑛 variables.

A 𝐾‑algebra is both a ring and a𝐾‑vector space; the addition
operations coincide and
multiplication is 𝐾‑linear. A𝐾‑algebra homomorphism is a𝐾‑linear ring homomorphism.

Among all commutative 𝐾‑algebras, polynomial rings over 𝐾 are
characterized by the homomorphisms emanating from them.

1.0.0 Theorem (Universal property of polynomial rings). Let 𝐾 be
field and let 𝑅 be commutative ring containing 𝐾. For all ring elements𝛼1, 𝛼2, … , 𝛼𝑛 ∈ 𝑅, there exists a unique 𝐾‑algebra homomorphism from𝐾[𝑥1, 𝑥2, … , 𝑥𝑛] to𝑅 that sends𝑥𝑗 to𝛼𝑗 for all 1 ⩽ 𝑗 ⩽ 𝑛. Moreover, every𝐾‑algebra homorphism from 𝐾[𝑥1, 𝑥2, … , 𝑥𝑛] to 𝑅 is determined by such
a choice of ring elements 𝛼1, 𝛼2, … , 𝛼𝑛 ∈ 𝑅.

Idea of proof. Given 𝛼1, 𝛼2, … , 𝛼𝑛 ∈ 𝑅, the evaluation map

ev𝛼∶ 𝐾[𝑥1, 𝑥2, … , 𝑥𝑛]→𝑅
defined by ev𝛼(𝑓) = 𝑓(𝛼1, 𝛼2, … , 𝛼𝑛) ∈ 𝑅 for all 𝑓 ∈ 𝐾[𝑥1, 𝑥2, … , 𝑥𝑛]
is𝐾‑algebra homomorphism, and every𝐾‑algebra homomorphism
from 𝐾[𝑥1, 𝑥2, … , 𝑥𝑛] is uniquely determined by the images of the
variables 𝑥1, 𝑥2, … , 𝑥𝑛.

We next consider a special family of multivariate polynomials.

https://mathshistory.st-andrews.ac.uk/Biographies/Dedekind/
https://archive.org/details/vorlesungenberz01dedegoog/page/n6/mode/2up?q=Zahlenk%C3%83%C2%B6rper
https://archive.org/details/vorlesungenberz01dedegoog/page/n6/mode/2up?q=Zahlenk%C3%83%C2%B6rper
https://mathshistory.st-andrews.ac.uk/Biographies/Moore_Eliakim/
https://www.ams.org/journals/bull/1893-03-03/S0002-9904-1893-00178-X/S0002-9904-1893-00178-X.pdf
https://www.ams.org/journals/bull/1893-03-03/S0002-9904-1893-00178-X/S0002-9904-1893-00178-X.pdf
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1.0.1 Definition. The elementary symmetric polynomials in the ringℤ[𝑥1, 𝑥2, … , 𝑥𝑛] are

𝑒1 = 𝑒1(𝑥1, 𝑥2, … , 𝑥𝑛)∶= 𝑛∑𝑗=1 𝑥𝑗 = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛
𝑒2 = 𝑒2(𝑥1, 𝑥2, … , 𝑥𝑛)∶= ∑1⩽𝑗<𝑘⩽𝑛 𝑥𝑗𝑥𝑘 = 𝑥1𝑥2 + 𝑥1𝑥3 +⋯+ 𝑥𝑛−1𝑥𝑛

⋮𝑒𝑟 = 𝑒𝑟(𝑥1, 𝑥2, … , 𝑥𝑛)∶= ∑1⩽𝑗1<𝑗2<⋯<𝑗𝑟⩽𝑛 𝑥𝑗1𝑥𝑗2 ⋯𝑥𝑗𝑟⋮𝑒𝑛 = 𝑒𝑛(𝑥1, 𝑥2, … , 𝑥𝑛)∶= 𝑥1𝑥2⋯𝑥𝑛 .

For all 1 ⩽ 𝑟 ⩽ 𝑛, the terms in the
polynomial 𝑒𝑟 correspond bijectively
to the 𝑟‑element subset of the𝑛‑element set [𝑛]∶= {1, 2, … , 𝑛}. In
particular, 𝑒𝑟 has ( 𝑛𝑟 ) terms.

1.0.2 Problem. When 𝑛 = 4, list all terms in the four elementary
symmetric polynomials.

Solution. By definition, we have𝑒1 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4𝑒2 = 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2𝑥3 + 𝑥2𝑥4 + 𝑥3𝑥4𝑒3 = 𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 + 𝑥1𝑥3𝑥4 + 𝑥2𝑥3𝑥4𝑒4 = 𝑥1𝑥2𝑥3𝑥4 .
1.0.3 Proposition. In the ring (ℤ[𝑥1, 𝑥2, … , 𝑥𝑛])[𝑥], we have(𝑥 − 𝑥1)(𝑥 − 𝑥2)⋯(𝑥 − 𝑥𝑛)= 𝑥𝑛 − 𝑒1𝑥𝑛−1 + 𝑒2𝑥𝑛−2 −⋯+ (−1)𝑟𝑒𝑟𝑥𝑥−𝑟 +⋯+ (−1)𝑟𝑒𝑟 .
Proof. Expand the product (𝑥 − 𝑥1)(𝑥 − 𝑥2)⋯(𝑥− 𝑥𝑛): For each of
the𝑛 factors𝑥−𝑥𝑗, choose either𝑥 or−𝑥𝑗, take the product of these𝑛 choices, and sum over all possible ways of making the 𝑛 choices.

The terms involving 𝑥𝑛−𝑟 in (𝑥−𝑥1)(𝑥−𝑥2)⋯(𝑥−𝑥𝑛) are those
products where 𝑥 is choosen exactly 𝑛−𝑟 times. Hence, there exists
a subset {𝑗1, 𝑗2, … , 𝑗𝑟} ⊆ [𝑛] such that −𝑥𝑗𝑘 is chosen for the 𝑗𝑘th
factors, for all 1 ⩽ 𝑘 ⩽ 𝑟, and 𝑥 is chosen for the remaining 𝑛 − 𝑟
factors. The product of these choices is(−𝑥𝑗1)(−𝑥𝑗2)⋯(−𝑥𝑗𝑟)𝑥𝑛−𝑟 = (−1)𝑟𝑥𝑗1𝑥𝑗2 ⋯𝑥𝑗𝑟𝑥𝑛−𝑟 .
Summing over all possible subsets, the coefficient of 𝑥𝑛−𝑟 is(−1)𝑟 ∑1⩽𝑗1<𝑗2<⋯<𝑗𝑟⩽𝑛 𝑥𝑗1𝑥𝑗2 ⋯𝑥𝑗𝑟 = (−1)𝑟𝑒𝑟 .
1.0.4 Corollary. Let 𝑓 = 𝑥𝑛 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−2 +⋯𝑎𝑛−1𝑥 + 𝑎𝑛 be a
monic polynomial of degree 𝑛 with coefficients in a field 𝐾. When 𝑓 has
roots𝛼1, 𝛼2, … , 𝛼𝑛 in a field 𝐿 containing𝐾, then the coefficients of𝑓 are
expressed in terms of its roots as𝑎𝑟 = (−1)𝑟𝑒𝑟(𝛼1, 𝛼2, … , 𝛼𝑟) for all 1 ⩽ 𝑟 ⩽ 𝑛.

Proof. Since 𝛼1, 𝛼2, … , 𝛼𝑛 are roots of the polynomial 𝑓 ∈ 𝐿[𝑥], we
have 𝑓 = (𝑥 − 𝛼1)(𝑥 − 𝛼2)⋯(𝑥 − 𝛼𝑛). Hence, Proposition 1.0.3
implies that 𝑎𝑟 = (−1)𝑟𝑒𝑟(𝛼1, 𝛼2, … , 𝛼𝑟) for all 1 ⩽ 𝑟 ⩽ 𝑛.

Copyright © 2026 by Gregory G. Smith
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1.1 Symmetric Polynomials
Which multivariate polynomials are invariant under the action of
the symmetric group?

1.1.0 Definition. A polynomial 𝑓 ∈ ℤ[𝑥1, 𝑥2, … , 𝑥𝑛] is symmetric if𝜎(𝑓)∶= 𝑓(𝑥𝜎(1), 𝑥𝜎(2), … , 𝑥𝜎(𝑛)) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)
for all permutations 𝜎 in the symmetric group 𝔖𝑛. The symmetric
polynomials form the ring of invariants ℤ[𝑥1, 𝑥2, … , 𝑥𝑛]𝔖𝑛 defined to
be the subring {𝑓 ∈ ℤ[𝑥1, 𝑥2, … , 𝑥𝑛] || 𝜎(𝑓) = 𝑓 for all 𝜎 ∈ 𝔖𝑛}.

The sum and product of symmetric
polynomials are also symmetric, and
the unit 1 is symmetric.

1.1.1 Remark. For all 𝑢 ∈ ℕ𝑛, the monomial symmetric polynomial𝑚𝑢 ∈ ℤ[𝑥1, 𝑥2, … , 𝑥𝑛] is the sum of all monomials 𝑥𝑣 where 𝑣 ranges
over all distinct permutations of 𝑢 = (𝑢1, 𝑢2, … , 𝑢𝑛). For example,
when 𝑛 = 3, we have

In the definition of the monomial
symmetric polynomials, one may
assume that 𝑢1 ⩾ 𝑢2 ⩾ ⋯ ⩾ 𝑢𝑛.

𝑚(3,2,1) = 𝑥31𝑥22𝑥3 + 𝑥31𝑥2𝑥23 + 𝑥21𝑥32𝑥3 + 𝑥21𝑥2𝑥33 + 𝑥1𝑥32𝑥23 + 𝑥1𝑥22𝑥33 ,𝑚(2,1,1) = 𝑥21𝑥2𝑥3 + 𝑥1𝑥22𝑥3 + 𝑥1𝑥2𝑥23 .
1.1.2 Remark. For all 𝑑 ∈ ℕ, the complete homogeneous symmetric
polynomial ℎ𝑑 ∈ ℤ[𝑥1, 𝑥2, … , 𝑥𝑛] is the sum of all monomials of total
degree 𝑑. For example, when 𝑛 = 3, we haveℎ1= 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 𝑒1ℎ2= 𝑥21 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥22 + 𝑥2𝑥3 + 𝑥23ℎ3= 𝑥31 +𝑥21𝑥2 +𝑥21𝑥3 +𝑥1𝑥22 +𝑥1𝑥2𝑥3 +𝑥1𝑥23 +𝑥32 +𝑥22𝑥3 +𝑥2𝑥23 +𝑥33 .
1.1.3 The Fundamental Theorem of Symmetric Polynomials.
Every symmetric polynomial in the ring ℤ[𝑥1, 𝑥2, … , 𝑥𝑛] can be expressed
uniquely as a polynomial in the elementary symmetric polynomials with
coefficients in ℤ: ℤ[𝑥1, 𝑥2, … , 𝑥𝑛]𝔖𝑛 = ℤ[𝑒1, 𝑒2, … , 𝑒𝑛].
Proof by Gauss (1816). To begin, we introduce another structure on
the polynomial ring ℤ[𝑥1, 𝑥2, … , 𝑥𝑛]. The graded lexicographic order>glex on the monomials in ℤ[𝑥1, 𝑥2, … , 𝑥𝑛] is defined by 𝑥𝑢 >glex 𝑥𝑣
when ‖𝑢‖1 > ‖𝑣‖1, or ‖𝑢‖1 = ‖𝑣‖1 and the first nonzero entry in the
difference 𝑢 − 𝑣 = (𝑢1 − 𝑣1, 𝑢2 − 𝑣2, … , 𝑢𝑛 − 𝑣𝑛) is positive. This
total order has an important feature: given a monomial 𝑥𝑢, there
are only finitely many monomials 𝑥𝑣 such that 𝑥𝑣 < 𝑥𝑢. Indeed, the
inequality ‖𝑢‖1 = 𝑢1+𝑢2+⋯+𝑢𝑛 ⩾ 𝑣1+𝑣2+⋯+𝑣𝑛 = ‖𝑣‖1 implies
that there are at most 1 + ‖𝑢‖1 possibilities for each 𝑣𝑗. The leading
term of a polynomial in ℤ[𝑥1, 𝑥2, … , 𝑥𝑛] is the term whose monomial
is greatest with respect to <glex.

The graded lexicographic order gives𝑥21 >glex 𝑥1𝑥2 >glex 𝑥1𝑥3 >glex 𝑥22.

For all 1 ⩽ 𝑟 ⩽ 𝑛, the leading term of
the elementary symmetric polynomial𝑒𝑟 is 𝑥1𝑥2 ⋯𝑥𝑟.

Let 𝑓 ∈ ℤ[𝑥1, 𝑥2, … , 𝑥𝑛] be a nonzero symmetric polynomial with
leading term is 𝑐𝑥𝑢. We claim that 𝑢1 ⩾ 𝑢2 ⩾ ⋯ ⩾ 𝑢𝑛. Otherwise
there exists 1 ⩽ 𝑗 < 𝑛 such that 𝑢𝑗 < 𝑢𝑗+1. Being symmetric, 𝑓 is
unchanged when 𝑥𝑗 and 𝑥𝑗+1 are swapped, so𝑐𝑥𝑣 ∶= 𝑐𝑥𝑢11 𝑥𝑢22 ⋯𝑥𝑢𝑗+1𝑗 𝑥𝑢𝑗𝑗+1 ⋯𝑥𝑢𝑛𝑛
is also a term in 𝑓. Since ‖𝑢‖1 = ‖𝑣‖1 and𝑣 − 𝑢 = (0, 0, … , 𝑢𝑗+1 − 𝑢𝑗, 𝑢𝑗 − 𝑢𝑗+1, 0, … , 0) ,
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it follows that 𝑥𝑣 > 𝑥𝑢, which contradicts the assumption that 𝑐𝑥𝑢
is the leading term.

Consider 𝑔 ≔ 𝑒𝑢1−𝑢21 𝑒𝑢2−𝑢32 ⋯𝑒𝑢𝑛−1−𝑢𝑛𝑛−1 𝑒𝑢𝑛𝑛 . Since the leading term
of a product is a product of the leading terms, the leading term of
the symmetric polynomial 𝑔 is(𝑥1)𝑢1−𝑢2(𝑥1𝑥2)𝑢2−𝑢3 ⋯ (𝑥1𝑥2⋯𝑥𝑛−1)𝑢𝑛−1−𝑢𝑛(𝑥1𝑥2⋯𝑥𝑛)𝑢𝑛= 𝑥𝑢1−𝑢2+𝑢2−𝑢3+⋯+𝑢𝑛1 𝑥𝑢2−𝑢3+⋯+𝑢𝑛2 ⋯𝑥𝑢𝑛−1−𝑢𝑛+𝑢𝑛𝑛−1 𝑥𝑢𝑛𝑛−1 = 𝑥𝑢 .
It follows that 𝑓 and 𝑐𝑔 have the same leading term. Hence, 𝑓 − 𝑐𝑔
has a strictly smaller leading term. Moreover, the difference 𝑓− 𝑐𝑔
is symmetric because 𝑓 and 𝑔 are.

Repeat the process starting with𝑓−𝑐𝑔 instead of𝑓. After finitely
many repetitions, this process will terminate because there are only
finitely many monomials less than the leading term of 𝑓. Thus, this
algorithm expresses a symmetric polynomials as a polynomial in
the elementary symmetric polynomials 𝑒1, 𝑒2, … , 𝑒𝑛.

It remains to see that this expression is unique. Suppose that
there is 0 ≠ ℎ ∈ ℤ[𝑥1, 𝑥2, … , 𝑥𝑛] such that ℎ(𝑒1, 𝑒2, … , 𝑒𝑛) = 0. If 𝑐𝑥𝑤
is a term in ℎ, then 𝑐𝑥𝑤1+𝑤2+⋯+𝑤𝑛1 𝑥𝑤2+𝑤3+⋯+𝑤𝑛2 ⋯𝑥𝑤𝑛𝑛 is the leading
term in the product 𝑐𝑒𝑤11 𝑒𝑤22 … 𝑒𝑤𝑛𝑛 . Since the linear map(𝑤1,𝑤2, … ,𝑤𝑛) ↦ (𝑤1 +𝑤2 +⋯+𝑤𝑛,𝑤2 +𝑤3 +⋯+𝑤𝑛,… ,𝑤𝑛)
is injective, all other terms in the expansion of ℎ(𝑒1, 𝑒2, … , 𝑒𝑛) have
different leading terms. Hence, the leading term is not cancelled
by any other monomial, so ℎ(𝑒1, 𝑒2, … , 𝑒𝑛) ≠ 0. This contradiction
established uniqueness.

Since there a no nontrivial polynomial
relations among the 𝑒1, 𝑒2, … , 𝑒𝑟, this
collection of polynomials is
algebraically independent.

1.1.4 Problem. Express the symmetric polynomial ℎ2∈ ℤ[𝑥1, 𝑥2, 𝑥3]
as polynomial in the elementary symmetric polynomials.

Solution. Since the leading term of ℎ2 is 𝑥21, we first considerℎ2 − (𝑒1)2 = 𝑥21 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥22 + 𝑥2𝑥3 + 𝑥23 − (𝑥1 + 𝑥2 + 𝑥3)2= −𝑥1𝑥2 − 𝑥1𝑥3 − 𝑥2𝑥2 .
We deduce that ℎ2 = 𝑒21 − 𝑒2.

1.1.5 Corollary. Let 𝑓 ∈ 𝐾[𝑥] be a monic polynomial of degree 𝑛 and
having roots 𝛼1, 𝛼2, … , 𝛼𝑛 in a field 𝐿 containing 𝐾. For all symmetric
polynomials 𝑔 ∈ 𝐾[𝑥1, 𝑥2, … , 𝑥𝑛], we have 𝑔(𝛼1, 𝛼2, … , 𝛼𝑛) ∈ 𝐾.

Proof. The evaluation map from 𝐾[𝑥1, 𝑥2, … , 𝑥𝑛] to 𝐿 determined
by the roots 𝛼1, 𝛼2, … , 𝛼𝑛 is a 𝐾‑algebra homomorphism. The Fun‑
damental Theorem of Symmetric Polynomials establishes that the
symmetric polynomial 𝑔 is the elementary symmetric polynomials
with coefficients in𝐾. Hence, evaluation at𝛼1, 𝛼2, … , 𝛼𝑛 is a polyno‑
mial in the 𝑒𝑟(𝛼1, 𝛼2, … , 𝛼𝑛) for all 1 ⩽ 𝑟 ⩽ 𝑛. Corollary 1.0.4 shows
that, up to sign, each 𝑒𝑟(𝛼1, 𝛼2, … , 𝛼𝑛) ∈ 𝐾 is a coefficient of𝑓. Since𝑓 ∈ 𝐾[𝑥], we conclude that 𝑒𝑟(𝛼1, 𝛼2, … , 𝛼𝑛) ∈ 𝐾.
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1.2 The Discriminant
How can we define the discriminant for all univariate polynomials?

1.2.0 Definition. The discriminant is the polynomialΔ∶= ∏1⩽𝑗<𝑘⩽𝑛(𝑥𝑗 − 𝑥𝑘)2 ∈ ℤ[𝑥1, 𝑥2, … , 𝑥𝑛] .
1.2.1 Remark. There are (𝑛2 ) factors in the defining product of Δ.
Since (𝑥𝑗 − 𝑥𝑘)2 = −(𝑥𝑗 − 𝑥𝑘)(𝑥𝑘 − 𝑥𝑗), we see that

The word “discriminant” was coined
in J.J. Sylvester, On a remarkable
discovery in the theory of canonical forms
and of hyperdeterminants, Philos. Mag.
(2), 12 (1851), 391–410.

Δ∶= (−1)𝑛(𝑛−1)/2∏𝑗≠𝑘(𝑥𝑗 − 𝑥𝑘) ∈ ℤ[𝑥1, 𝑥2, … , 𝑥𝑛] .
In particular, the discriminant is invariant under any transposition.
We conclude that Δ is a symmetric polynomial.

1.2.2 Problem. Express the discriminant Δ ∈ ℤ[𝑥1, 𝑥2, 𝑥3] as a poly‑
nomial in the elementary symmetric polynomials.

Solution. We haveΔ = (𝑥1 − 𝑥2)2(𝑥1 − 𝑥3)2(𝑥2 − 𝑥2)2= 𝑥41𝑥22−2𝑥31𝑥32+⋯− 2𝑥41𝑥2𝑥3+2𝑥31𝑥22𝑥3+⋯−6𝑥21𝑥22𝑥23+⋯+𝑥22𝑥43= 𝑒21𝑒22 − 4𝑒32 − 4𝑒31𝑒3 + 18𝑒1𝑒2𝑒3 − 27𝑒23 .
From the definition of the discriminant, we see that

This is the Vandermonde matrix.

√Δ∶= ∏1⩽𝑗<𝑘⩽𝑛(𝑥𝑗 − 𝑥𝑘) ∈ ℤ[𝑥1, 𝑥2, … , 𝑥𝑛]
= det

⎡⎢⎢⎢⎣
1 𝑥1 𝑥21 ⋯ 𝑥𝑛−21 𝑥𝑛−111 𝑥2 𝑥22 ⋯ 𝑥𝑛−22 𝑥𝑛−12⋮ ⋮ ⋮ ⋱ ⋮ ⋮1 𝑥𝑛 𝑥2𝑛 ⋯ 𝑥𝑛−2𝑛 𝑥𝑛−1𝑛

⎤⎥⎥⎥⎦ .
1.2.3 Remark. For all 𝑑 ∈ ℕ, the power sum symmetric polynomials𝑝𝑑 ∈ 𝐾[𝑥1, 𝑥2, … , 𝑥𝑛] is the sum of all 𝑑th powers of the variables:𝑝𝑑 = ∑𝑛𝑗=1 𝑥𝑑𝑗 . For example, when 𝑛 = 3, we have𝑝1 = 𝑥1 + 𝑥2 + 𝑥3 = 𝑒1 ,𝑝2 = 𝑥21 + 𝑥22 + 𝑥23 = 𝑒21 − 2𝑒2 ,𝑝3 = 𝑥31 + 𝑥32 + 𝑥33 = 𝑒31 − 3𝑒1𝑒2 + 3𝑒3 .
It follows that

Δ = ⎛⎜⎜⎝det
⎡⎢⎢⎢⎣
1 𝑥1 𝑥21 ⋯ 𝑥𝑛−21 𝑥𝑛−111 𝑥2 𝑥22 ⋯ 𝑥𝑛−22 𝑥𝑛−12⋮ ⋮ ⋮ ⋱ ⋮ ⋮1 𝑥𝑛 𝑥2𝑛 ⋯ 𝑥𝑛−2𝑛 𝑥𝑛−1𝑛

⎤⎥⎥⎥⎦
⎞⎟⎟⎠
2

= det
⎛⎜⎜⎝
⎡⎢⎢⎢⎣

1 1 1 ⋯ 1 1𝑥1 𝑥2 𝑥3 ⋯𝑥𝑛−2 𝑥𝑛⋮ ⋮ ⋮ ⋱ ⋮ ⋮𝑥𝑛−11 𝑥𝑛−12 𝑥𝑛−13 ⋯𝑥𝑛−1𝑛−1 𝑥𝑛−1𝑛
⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
1 𝑥1 𝑥21 ⋯ 𝑥𝑛−21 𝑥𝑛−111 𝑥2 𝑥22 ⋯ 𝑥𝑛−22 𝑥𝑛−12⋮ ⋮ ⋮ ⋱ ⋮ ⋮1 𝑥𝑛 𝑥2𝑛 ⋯ 𝑥𝑛−2𝑛 𝑥𝑛−1𝑛

⎤⎥⎥⎥⎦
⎞⎟⎟⎠

= det
⎡⎢⎢⎢⎣
𝑝0 𝑝1 𝑝2 ⋯ 𝑝𝑛−1 𝑝𝑛−1𝑝1 𝑝3 𝑝4 ⋯ 𝑝𝑛−1 𝑝𝑛⋮ ⋮ ⋮ ⋱ ⋮ ⋮𝑝𝑛−1 𝑝𝑛 𝑝𝑛+1 ⋯ 𝑝2𝑛−3 𝑝2𝑛−2

⎤⎥⎥⎥⎦ .
Copyright © 2026 by Gregory G. Smith
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1.2.4 Proposition. For all 𝜎 ∈ 𝔖𝑛, we have 𝜎(√Δ) = sgn(𝜎)√Δ.

Proof. Suppose that 𝜎∶= (𝑖 𝑗). Observe that𝜎(√Δ) = 𝜎((𝑥𝑖 − 𝑥𝑗)) ∏𝑘≠𝑖,𝑗(𝑥𝑖 − 𝑥𝑘)(𝑥𝑗 − 𝑥𝑘) ∏ℓ,𝑚≠𝑖,𝑗ℓ<𝑚
(𝑥ℓ − 𝑥𝑚)

= (𝑥𝑗 − 𝑥𝑖) ∏𝑘≠𝑖,𝑗(𝑥𝑖 − 𝑥𝑘)(𝑥𝑗 − 𝑥𝑘) ∏ℓ,𝑚≠𝑖,𝑗ℓ<𝑚
(𝑥ℓ − 𝑥𝑚)

= −𝜎(√Δ) .
Every permutation is a product 𝜎 = 𝜏1𝜏2 ⋯𝜏ℓ of transpositions, so
we obtain 𝜎(√Δ) = (𝜏1𝜏2 ⋯𝜏ℓ)(√Δ) = (−1)ℓ√Δ = sgn(𝜎)√Δ.

The discriminant of a monic polynomial is obtain from this more
general discriminant polynomial.

1.2.5 Definition. The discriminant of a monic polynomial𝑓 = 𝑥𝑛 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−2 +⋯+ 𝑎𝑗𝑥𝑛−𝑗 +⋯+ 𝑎𝑛 ∈ 𝐾[𝑥]
of positive degree 𝑛 is defined to be The evaluation map 𝑒𝑟 ↦ (−1)𝑗𝑎𝑟

sends the Δ to Δ(𝑓).Δ(𝑓)∶= Δ(−𝑎1, 𝑎2, … , (−1)𝑗𝑎𝑗, … , (−1)𝑛𝑎𝑛) ∈ 𝐾 ,
where Δ is regarded as a polynomial in 𝐾[𝑒1, 𝑒2, … , 𝑒𝑛].
1.2.6 Problem. When 𝑓 = 𝑥2 + 𝑏𝑥 + 𝑐, verify that Δ(𝑓) = 𝑏2 − 4𝑐.

Solution. When 𝛼1, 𝛼2 denote the roots of 𝑓, we haveΔ(𝑓) = (𝛼1 − 𝛼2)2 = 𝛼21 − 2𝛼1𝛼2 + 𝛼22= (𝑒1(𝛼1, 𝛼2))2 − 4𝑒2(𝛼1, 𝛼2) = 𝑏2 − 4𝑐 .
1.2.7 Proposition. For any monic polynomial 𝑓 ∈ 𝐾[𝑥] having degree𝑛 and roots 𝛼1, 𝛼2, … , 𝛼𝑛 in a field 𝐿 containing 𝐾, we haveΔ(𝑓) = ∏1⩽𝑗<𝑘⩽𝑛(𝛼𝑗 − 𝛼𝑘)2 .
Proof. Observe that

ev𝛼(Δ) = ev𝛼 ( ∏1⩽𝑗<𝑘⩽𝑛(𝑥𝑗 − 𝑥𝑘)2) = ∏1⩽𝑗<𝑘⩽𝑛(𝛼𝑗 − 𝛼𝑘)2 .
Since Δ is symmetric, the image ev𝛼(Δ) can be expressed uniquely
as a polynomial in ev𝛼(𝑒1), ev𝛼(𝑒2), … , ev𝛼(𝑒𝑛). Corollary 1.0.4 shows
that 𝑎𝑟 = (−1)𝑟𝑒𝑟(𝛼1, 𝛼2, … , 𝛼𝑛) = (−1)𝑟 ev𝛼(𝑒𝑟) for all 1 ⩽ 𝑟 ⩽ 𝑛, so
we conclude that ev𝛼(Δ) = Δ(𝑓).
1.2.8 Corollary. Let 𝑓 ∈ 𝐾[𝑥] be monic polynomial having degree 𝑛
and roots 𝛼1, 𝛼2, … , 𝛼𝑛 in a field 𝐿 containing 𝐾. The discriminant Δ(𝑓)
equals zero if and only if at least two roots coincide.

Proof. Proposition 1.2.7 establishes that Δ(𝑓) = ∏1⩽𝑗<𝑘⩽𝑛(𝛼𝑗 −𝛼𝑘)2.
Since 𝐿 is a domain, this product equals zero if and only if at least
one of the factor equals zero.

Copyright © 2026 by Gregory G. Smith
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