1 Symmetric Polynomials

Symmetric polynomials are fundamental to Galois theory because
they link univariate polynomials with permutations.

1.0 Polynomials in Several Variables

What is the polynomial ring in # variables? Fix n € N. A polynomial
in the indeterminates x;, X,, ..., X,, with coefficients in a field K is a
finite sum of terms, which are expressions of the form

n
exi'xy? - xp" = c [ [ x;* wherece Kandu; eNforalll<ign.
i=1

For all u := (uy, Uy, ..., u,) € N", the product x* := x}'x52 --- x;" is a
monomial. A term cx* is nonzero if its coefficient c is nonzero. The
total degree of a nonzero term cx* is ||ull; = u; + uy +--- + u, € N.

The set of all polynomials in x;, X5, ..., X,, with coefficients in the
field K is denoted by K[x,, X,, ..., X,,]; it forms a commutative ring
(and a K-algebra) under the standard addition and multiplication of
polynomials. Given a nonzero f € K[x, X,, ..., X,], the total degree
deg(f) is the maximum of the total degrees of the nonzero terms in
the polynomial f. Since K is a domain, one verifies that

deg(fg) = deg(f) + deg(g)

for all nonzero f,g € K[x;, Xx5,..., X,]. As a consequence, the ring
K[x;, X5, ..., X,] is also a domain. Since K[x,, X5, ..., X, | is a domain,
its field of fractions is

K(x1, X3, 0y Xp) = K[Xq, X2, ..., X |0

= {ch ’f,geK[xl,xz,...,xn] such that g # 0} .

This larger K-algebra is the field of rational functions in n variables.
Among all commutative K-algebras, polynomial rings over K are
characterized by the homomorphisms emanating from them.

1.0.0 Theorem (Universal property of polynomial rings). Let K be
field and let R be commutative ring containing K. For all ring elements
o1, Xy, .. s &, € R, there exists a unique K -algebra homomorphism from
K[xy, x5, ..., x,] toR thatsends x; to; for all1l < j < n. Moreover, every
K -algebra homorphism from K[x,, X5, ..., X,,] to R is determined by such
a choice of ring elements a;, &5, ..., &, € R.

Idea of proof. Given a;, a5, ..., &, € R, the evaluation map
ev,: K[x;,X5,...,X,] > R

defined by ev,(f) = f(a;, ay, ..., ;) € R for all f € K[xy, X,, ..., X,]
is K-algebra homomorphism, and every K-algebra homomorphism
from K[x,, x,, ..., X,,] is uniquely determined by the images of the
variables x, X5, ..., X;,. O

We next consider a special family of multivariate polynomials.
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Richard Dedekind introduced the
German word “Korper” (meaning
“body” or “corpus”) for a set of real or
complex numbers that is closed under
the arithmetic operations; see

L. Dirichlet, P. Gustav, and
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The constant 1:= xjx5 ---Xp isa

monomial.

A K-algebra is both aring and a
K-vector space; the addition
operations coincide and
multiplication is K-linear. A
K-algebra homomorphism is a
K-linear ring homomorphism.
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1.0.1 Definition. The elementary symmetric polynomials in the ring
Z[X1, X5, ..., Xy,] are

n
e = e1(X1, X0y Xp) 1= DX, =X+ Xy + 0+ Xy
=1

J
e = e (X1, X0y X)) 1= D) XX = XX + Xy X3 4 0+ X1 Xy
1<j<k<n

e, = e, (X1, Xy, ..., X,) 1= > X, Xj, -+ X;,
1€j1<j2<<jrsn

e, = e,(X1, X0y Xp) 1= X1 X5 Xpp

1.0.2 Problem. When n = 4, list all terms in the four elementary
symmetric polynomials.

Solution. By definition, we have

e1=x1+x2+X3+X4

€, = X1X, + X1X3 + X1X4 + XyX3 + X2Xy + X3Xy
€3 = X1X,X3 + X1X2X4 + X1X3Xy4 + X X3Xy
€4 = X1 XX3Xy . ]

1.0.3 Proposition. In the ring (Z[x,, X5, ..., X,,])[X], we have

(¢ = x)(x = x3) -+ (x = xp)
=x"—ex" ! +ex" 2 — -+ (=1)ex* " + -+ (=1)e,.

Proof. Expand the product (x — x;)(x — x5,) --- (x — x,,): For each of
the n factors x —Xj, choose either x or —X;j, take the product of these
n choices, and sum over all possible ways of making the n choices.

The terms involving x"~" in (x — x;)(x — x,) --- (x — x,,) are those
products where x is choosen exactly n —r times. Hence, there exists
a subset {ji, j,, ..., j;} € [n] such that —Xx;,_ is chosen for the jith
factors, for all 1 < k < r, and x is chosen for the remaining n — r
factors. The product of these choices is

n—r — r n—r
(=2x5,)(=23,) -+ (=25, 0% = (= 1), %, -+ x5, X"
Summing over all possible subsets, the coefficient of x"~" is

(_1)}" Z lesz xjr = (—l)re,. ]

1€j1<j2 <+ <jrsn
1.0.4 Corollary. Let f = x" + a;x" ' + a,x" % + ---a,_1x + a, bea
monic polynomial of degree n with coefficients in a field K. When f has

roots oy, &, ..., &, in a field L containing K, then the coefficients of f are
expressed in terms of its roots as

a, = (-D’e(cx;,a,...,0,) foralll<r<n.

Proof. Since ay, &5, ..., a, are roots of the polynomial f € L[x], we
have f = (x — a;)(x — a,) ---(x — a,). Hence, Proposition 1.0.3
implies that a, = (=1)"e,(ay, &y, ..., a,) forall 1 < r < n. O
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For all 1 < r < n, the terms in the
polynomial e, correspond bijectively
to the r-element subset of the
n-element set [n] := {1,2,...,n}. In
particular, e, has (}) terms.

Copyright © 2026 by Gregory G. Smith



1.1 Symmetric Polynomials

Which multivariate polynomials are invariant under the action of
the symmetric group?

1.1.0 Definition. A polynomial f € Z[x,, X5, ..., X,,] is symmetric if

G(f) = f(xcr(l)’ Xg(2)s s xcr(n)) = f(xb X2y xn)
for all permutations o in the symmetric group ©,. The symmetric

polynomials form the ring of invariants Z[x, x5, ..., X,,]®* defined to
be the subring {f € Z[x}, X,, ..., x,] | o(f) = f forallo € &,}.

1.1.1 Remark. For all u € N", the monomial symmetric polynomial
m, € Z[Xq, X5, ..., X,;] is the sum of all monomials x" where v ranges
over all distinct permutations of u = (u;,u,,...,u,). For example,
when n = 3, we have

M) = X3X3X3 + X3X,X5 + XTX3X5 + X3X,X3 + X x3%3 + x,x3x3,
— 2 2 2
m(z,l’l) — xleX3 + xleX3 + xleX3 .
1.1.2 Remark. For all d € N, the complete homogeneous symmetric

polynomial h; € Z|x, X,, ..., X,] is the sum of all monomials of total
degree d. For example, when n = 3, we have

h1=X1+x2+x3+X4=el

hy= X3 + XX, + X1X3 + X3 + X, %5 + X3

hy= X3 4 X3, + X3X5 + X105 + X1 X,X5 4+ X, X3 4+ X5 + X3%; + X, %3 + X3

1.1.3 The Fundamental Theorem of Symmetric Polynomials.
Every symmetric polynomial in the ring Z[ X, X5, ..., X,,] can be expressed
uniquely as a polynomial in the elementary symmetric polynomials with
coefficients inZ: Z[X,, X3, ..., X, )" = Z[e;, €5, ..., €,].

Proof by Gauss (1816). To begin, we introduce another structure on
the polynomial ring Z[x,, x,, ..., X, ]. The graded lexicographic order
>olex ON the monomials in Z[x, X5, ..., X,,] is defined by x* >4 X°
when |lu||, > [[v]|;, or [lu]|, = ||v]|,; and the first nonzero entry in the
difference u — v = (u; — vy, U, — Uy,..., U, — U,) is positive. This
total order has an important feature: given a monomial x*, there
are only finitely many monomials x" such that x” < x*. Indeed, the
inequality (|lull, = u; +u, +---+u, > V3 + vV, +---+v, = [|v||, implies
that there are at most 1 + ||u||, possibilities for each v;. The leading
term of a polynomial in Z[x,, X, ..., X,,] is the term whose monomial
is greatest with respect to <gjex-

Let f € Z|x,, x,, ..., X,,] be a nonzero symmetric polynomial with
leading term is cx*. We claim that u; > u, > --- > u,. Otherwise
there exists 1 < j < n such that u; < u;,,. Being symmetric, f is

unchanged when x; and x;,, are swapped, so
Ujtl U L yclin
Xj T Xjr1 X

is also a term in f. Since |[ul|; = |[v||; and

U . Ui .Uz
Cx «-— Cxl x2 cee

v—u=(0,0,..,Ujy; — Uj,Uj — Uj;1,0,..,0),
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The sum and product of symmetric
polynomials are also symmetric, and
the unit 1 is symmetric.

In the definition of the monomial
symmetric polynomials, one may
assume thatu; > uy > -+ > uy.

The graded lexicographic order gives
2 2
X1 >glex xlxz >glex X1X3 >glex XZ.

For all 1 < r < n, the leading term of
the elementary symmetric polynomial
ey is X1Xy -+ Xp.
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it follows that x¥ > x*, which contradicts the assumption that cx*
is the leading term.

Consider g := e} "2e327" ... e,"1 """, ". Since the leading term
of a product is a product of the leading terms, the leading term of
the symmetric polynomial g is

()72 (g X) 1274 e (X1 X5 -0 Xppq ) M1 TR (X1 X - X)) Hn

_ Jui—uxtupx—uz+---+u,y Uz—uzt+---+uy Up_1—Upt+tUuy Un _ u
= x! x5 P i Xty = x*.

It follows that f and cg have the same leading term. Hence, f — cg
has a strictly smaller leading term. Moreover, the difference f — cg
is symmetric because f and g are.

Repeat the process starting with f —cg instead of f. After finitely
many repetitions, this process will terminate because there are only
finitely many monomials less than the leading term of f. Thus, this
algorithm expresses a symmetric polynomials as a polynomial in
the elementary symmetric polynomials ey, e,, ..., e,.

It remains to see that this expression is unique. Suppose that
there is 0 # h € Z[x;, X5, ..., X,] such that h(ey, e,,...,e,) = 0. If cx¥
is a term in h, then cx F2 T T Wn 2T Ws T W P s the leading
term in the product ce;"e;? ...e,". Since the linear map

(Wy, Wy s Wy) P (W + Wy + -+ + Wy, Wy + W3+ -+ + Wy o, Wyy)

is injective, all other terms in the expansion of h(ey, e, ..., e,) have
different leading terms. Hence, the leading term is not cancelled
by any other monomial, so h(e;,e,,...,e,) # 0. This contradiction
established uniqueness. O

1.1.4 Problem. Expressthe symmetric polynomial h, € Z[x;, X, X3]
as polynomial in the elementary symmetric polynomials.

Solution. Since the leading term of h, is x?, we first consider

hy, — (1) = X3 + X1X%, + X, X3 + X5 + X,%3 + X3 — (X, + X5 + Xx3)2

We deduce that h, = e} — e,. O

1.1.5 Corollary. Let f € K[x] be a monic polynomial of degree n and
having roots o, o, ..., &, in a field L containing K. For all symmetric
polynomials g € K[x,, X5, ..., X, |, we have g(&t;, a5, ..., &t,) € K.

Proof. The evaluation map from K[x;, X,,..., X,] to L determined
by the roots a;, aj, ..., &, is a K-algebra homomorphism. The Fun-
damental Theorem of Symmetric Polynomials establishes that the
symmetric polynomial g is the elementary symmetric polynomials
with coefficients in K. Hence, evaluation at a4, &, ..., &, is a polyno-
mial in the e, (o, a3, ..., a,) for all 1 < r < n. Corollary 1.0.4 shows
that, up to sign, each e, (a;, &, ..., @,,) € K is a coefficient of f. Since
f € K[x], we conclude that e,(a;, @3, ..., x,) € K. O
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Since there a no nontrivial polynomial
relations among the ey, e,, ..., e, this
collection of polynomials is
algebraically independent.
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1.2 The Discriminant

How can we define the discriminant for all univariate polynomials?

1.2.0 Definition. The discriminant is the polynomial
A= ] G —x0)% € Z[xy, X350, X).

1<j<k<n

1.2.1 Remark. There are () factors in the defining product of A.

Since (x; — x,)* = —(x; — ;) (X, — X;), we see that
A= (-2 TT(x; — xi) € Z[x1, X3, 0, X -
J#k

In particular, the discriminant is invariant under any transposition.
We conclude that A is a symmetric polynomial.

1.2.2 Problem. Express the discriminant A € Z[x4, X,, X3] as a poly-
nomial in the elementary symmetric polynomials.

Solution. We have

— 2 2 2
A= (X = x2)%(x — x3)%(X3 — Xx3)
= Xx{x3=2X3x5 4+ — 22X}, x5+ 2X3 3%, 4 - —6X3 X3 X3 + - + X35

= ele — 4¢3 — dede; + 18e,e,e; — 27e3. O

From the definition of the discriminant, we see that

VA = II &= xi0) € Z[x1, x5, ..., X]

1<j<k<n
1 x; x2.-xP72 xp!
2 n—2 n-1
- det 1 xz xz e x2 x2

C 2 an-2 ynel
1 x, x5 x5 Xy

1.2.3 Remark. For all d € N, the power sum symmetric polynomials
Pa € K[x1,X5,...,X,] is the sum of all dth powers of the variables:
P4 = Z;.l:l x}i. For example, when n = 3, we have

P1 =X+ X, + X3 =eq,

P2 = X3+ x5+ x% = e? —2e,,
Ps = X5+ X3+ X3 = e} —3eje, + 3e;.
It follows that
- _ _18\2
1 x; x?2..-xp2 xp!
2 n—2 n-—1
A= det 1 x2 x2 --~x2 x2
P Lo L
1 X, X xﬁ xﬁ
[ 1 1 1 -~ 1 1 J[1x x} - xp2xp!
2 n—-2 y.n—1
— det X1 X; X3 Xy, X 1 x, X5 -+ X577 X3
R S N O IRl | BIEREE ap
[ po D1 D2 Pn-1 Pn-1 |
=det| P1 P3 D4 Pn-1  Pn
| Pn—1 Pn Pn+1 ** P2n-3 D2n-2
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The word “discriminant” was coined
in J.J. Sylvester, On a remarkable
discovery in the theory of canonical forms
and of hyperdeterminants, Philos. Mag.
(2),12 (1851), 391-410.

This is the Vandermonde matrix.
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1.2.4 Proposition. Forallc € &,, we have O'(\/Z) = sgn(o)VA.

Proof. Suppose that o := (i j). Observe that
o(Va) = o((x;i = x)) TT G = 6 = xi) T Cee = %)

k#i,j ¢, m#1, j
f<m
= (xj - X;) H(xi - xk)(xj - Xi) H (xe = Xm)
ke, j &,m#L,j
f<m

= —O'(V A).
Every permutation is a product ¢ = 7,7, --- T, of transpositions, so

we obtain o(\/Z) = (1,75 Tg)(\/z) = (=1V/A = sgn(o)VA. O

The discriminant of a monic polynomial is obtain from this more
general discriminant polynomial.

1.2.5 Definition. The discriminant of a monic polynomial
f=x"+a;x" ' +a,x" 2+ +a;x"7 + - +a, €K[x]
of positive degree n is defined to be

The evaluation map e, — (—1)/a,

A(f) = A(-ay, ay, .., (=1)a;, .., (-1)"a,) € K, sends the A to A(f).

where A is regarded as a polynomial in K|ey, e,, ..., €, ].
1.2.6 Problem. When f = x? + bx + ¢, verify that A(f) = b? — 4c.

Solution. When «;, a, denote the roots of f, we have
A(f) = (o = ay)? = O(% - 20, + O(%
= (el(al’ aZ))Z —dey(oy, ) =b2—4c. O

1.2.7 Proposition. For any monic polynomial f € K|x] having degree
n and roots oy, A, ..., &, in a field L containing K, we have
A= T (o5 —ap)?.
1€ j<k<n

Proof. Observe that

evg(A) = eVoc( H (xj - xk)2> = H (ij —ag)?.

1<j<kgn 1€j<k<n

Since A is symmetric, the image ev,(A) can be expressed uniquely
as a polynomial in ev,(e;), ev,(e,), ..., ev,(e,). Corollary 1.0.4 shows
thata, = (-1)"e.(ay, Az, ..., x,) = (1) ev,(e,) foralll < r < n, so
we conclude that ev,(A) = A(f). O

1.2.8 Corollary. Let f € K|[x] be monic polynomial having degree n
and roots a,, &, ..., &, in a field L containing K. The discriminant A(f)
equals zero if and only if at least two roots coincide.

Proof. Proposition 1.2.7 establishes that A(f) = H1<j<k<n(“j — o )?.
Since L is a domain, this product equals zero if and only if at least
one of the factor equals zero. O
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