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By passing to a suitable extension of the coefficient field, one can
ensure that a univariate polynomial has roots. For the field ℂ of
complex numbers, we also show that no extension is required.

2.0 Existence of Roots
How can we enlarge a field to guarantee that a polynomial has a
root? We start with two perspectives on the complex numbers.

2.0.0 Remark (Hamilton 1835). The field ℂ of complex numbers is
the setℝ2 equipped with addition and multiplication defined by(𝑎, 𝑏) + (𝑐, 𝑑) = (𝑎 + 𝑐, 𝑏 + 𝑑)(𝑎, 𝑏)(𝑐, 𝑑) = (𝑎𝑐 − 𝑏𝑑, 𝑎𝑑 + 𝑏𝑐) .
One verifies that these operationsmakeℝ2 into a field with (1, 0) as
the multiplicative identity. Since (0, 1)(0, 1) = (−1, 0) = −(1, 0), we
set i∶= (0, 1). We identifyℝ with the subset {(𝑎, 0) ∈ ℝ2 || 𝑎 ∈ ℝ}.

This algebraic description of the
complex numbers appears in
W.R. Hamilton, Theory of Ⅽonjugate
Functions, or Algebraic Ⅽouples; with a
Preliminary Essay on Algebra as the
Science of Pure Time, Trans. R. Ɪrish
Acad., 17 (1837) 293–422.

2.0.1 Remark (Ⅽauchy 1847). Ⅽonsider the quotientℝ[𝑥] / ⟨𝑥2 + 1⟩.
Applying the Euclidean algorithm, we see that the remainder of any
polynomial inℝ[𝑥]modulo𝑥2+1has the form𝑎+𝑏𝑥where𝑎, 𝑏 ∈ ℝ.
Hence, the set {𝑎 + 𝑏𝑥 || 𝑎, 𝑏 ∈ ℝ} of all polynomials inℝ[𝑥] having
degree atmost 1 is a complete system of distinct representatives for
the cosets in the quotient ringℝ[𝑥]/ ⟨𝑥2 + 1⟩. Ⅿoreover, we have(𝑎 + 𝑏𝑥) + (𝑐 + 𝑑𝑥) ≡ (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑥 mod 𝑥2 + 1(𝑎 + 𝑏𝑥)(𝑐 + 𝑑𝑥) ≡ (𝑎𝑐) + (𝑎𝑑 + 𝑏𝑐)𝑥 + (𝑏𝑑)𝑥2≡ (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑥 mod 𝑥2 + 1 .
Writing 𝜋∶ ℝ[𝑥] → ℝ[𝑥] / ⟨𝑥2 + 1⟩ for the quotient map, it follows
that i ∶= 𝜋(𝑥) = 𝑥 + ⟨𝑥2 + 1⟩. Ɪt remains to show that this quotient
ring is a field; see the subsequent proposition. We identify ℝ with
the subset {𝑎 + 0𝑥 ∈ ℝ[𝑥] || 𝑎 ∈ ℝ}.

This alternative description of the
complex numbers appears in
A.‑Ⅼ. Ⅽauchy,Ⅿémoire sur une nouvelle
théorie des imaginaires, et sur les racines
symboliques des équations et des
équivalences, Ⅽ. R. Acad. Sci. Paris, 24
(1847) 1120–1130.

Fortuitously, the quotients of a univariate polynomial ring that
are fields have already been characterized.

2.0.2 Proposition. Ⅼet 𝐾 be a field. For all polynomials 𝑓 ∈ 𝐾[𝑥], the
following are equivalent.
a. The polynomial 𝑓 is irreducible in𝐾[𝑥].
b. The ideal ⟨𝑓⟩∶= {𝑓𝑔 || 𝑔 ∈ 𝐾[𝑥]} is a maximal ideal.
c. The quotient ring𝐾[𝑥]/ ⟨𝑓⟩ is a field.
Ⅽomment on proof. See ⅯATH 210.

This discussion motivates the following definition.

2.0.3 Ⅾefinition. Given a ring homomorphism 𝜑∶ 𝐾 → 𝐿 between
fields, we say that 𝐿 is a field extension of 𝐾. We identify 𝐾 with its
image 𝜑(𝐾)∶= {𝜑(𝛼) ∈ 𝐿 || 𝛼 ∈ 𝐾} and write 𝐾 ⊆ 𝐿.

The ring homomorphism 𝜑∶𝐾→𝐿
satisfies 𝜑(1𝐾) = 1𝐿. Since the only
ideals in the field 𝐾 are ⟨0⟩ = {0𝐾} and⟨1⟩ = 𝐾, it follows that Ker(𝜑) = ⟨0⟩, so
the map 𝜑 is injective.

Armed with this notion, we demonstrate that every irreducible
polynomial has a root in a field extension.
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2.0.4 Proposition. Ⅼet 𝐾 be a field. For all irreducible 𝑓 ∈ 𝐾[𝑥], there
exists a field extension𝐾 ⊆ 𝐿 and 𝛼 ∈ 𝐿 such that 𝑓(𝛼) = 0.
Proof. Ⅽonsider the principal ideal 𝐼 ∶= ⟨𝑓⟩ in𝐾[𝑥] and the quotient
ring 𝐿 ∶= 𝐾[𝑥] / 𝐼. Proposition 2.0.2 shows that the quotient 𝐿 is
a field. The composition of the canonical inclusion 𝜂∶ 𝐾 → 𝐾[𝑥]
with the canonical surjection 𝜋∶ 𝐾[𝑥] → 𝐾[𝑥] / 𝐼 produces a ring
homomorphism from𝐾 to 𝐿. Thus, we have a field extension𝐾 ⊆ 𝐿.
Ɪt remains to show that there exists𝛼 ∈ 𝐿 such that𝑓(𝛼) = 0. Set𝛼∶= 𝑥+ 𝐼. Suppose that 𝑓 = 𝑎0𝑥𝑛 +𝑎1𝑥𝑛−1 +⋯+𝑎𝑛−1𝑥+𝑎𝑛 where𝑎0, 𝑎1,… ,𝑎𝑛 ∈ 𝐾. Ɪt follows that𝑓(𝛼) = (𝑎0+𝐼)𝛼𝑛 + (𝑎1+𝐼)𝛼𝑛−1 +⋯+ (𝑎𝑛+𝐼)𝛼0= (𝑎0+𝐼)(𝑥+𝐼)𝑛 + (𝑎1+𝐼)(𝑥+𝐼)𝑛−1 +⋯+ (𝑎𝑛+𝐼)(𝑥+𝐼)0= (𝑎0𝑥𝑛+𝑎1𝑥𝑛−1+⋯+𝑎𝑛) + 𝐼= 𝑓+𝐼 = 0+𝐼 ,

Since 0 + 𝐼 is the additive identity, we deduce that 𝑓(𝛼) = 0.

The addition and multiplication
operations in a quotient ring are
inherited from the ambient ring.

Ⅾivisionwith remainder implies that field element𝛼 ∈ 𝐿 is a root
of a polynomial 𝑓 ∈ 𝐿[𝑥] if and only if 𝑥 − 𝛼 is a factor of 𝑓 in 𝐿[𝑥].
Extending this idea leads to the following notion.

2.0.5 Ⅾefinition. The polynomial 𝑓 ∈ 𝐾[𝑥] splits completely over 𝐿 if
there exists a field extension 𝐾 ⊆ 𝐿 and elements 𝛼1, 𝛼2,… ,𝛼𝑛 ∈ 𝐿
such that 𝑓 = 𝑎0(𝑥 − 𝛼1)(𝑥 − 𝛼2)⋯(𝑥 − 𝛼𝑛) where 𝑎0 ∈ 𝐾.
The existence of these larger fields is essentially a consequence

of the existence of a single root.

2.0.6 Theorem. Ⅼet 𝐾 be a field. For any nonconstant 𝑓 ∈ 𝐾[𝑥], there
is a field extension𝐾 ⊆ 𝐿 such that 𝑓 splits completely over 𝐿.
Proof. We proceed by induction on 𝑛 ∶= deg(𝑓). When 𝑛 = 1, it
follows that 𝑓 = 𝑎0𝑥 + 𝑎1 where 𝑎0 ≠ 0 and 𝑎0, 𝑎1 ∈ 𝐾. Setting𝐿 = 𝐾 and 𝛼1 = −𝑎1/𝑎0 implies that 𝑓 = 𝑎0(𝑥 − 𝛼1), which shows
that the base case holds.
Suppose that deg(𝑓) = 𝑛 > 1. Since 𝐾 is a field, the polynomial

ring𝐾[𝑥] is a unique factorization domain; seeⅯATH 210. Hence, 𝑓
has an irreducible factor 𝑔. Applying Proposition 2.0.4 to 𝑔 ∈ 𝐾[𝑥],
there exists a field extension 𝐾 ⊆ 𝐾1 and an element 𝛼1 ∈ 𝐾1 such
that 𝑔(𝛼1) = 0. Since 𝑔 is a factor of 𝑓, we also have 𝑓(𝛼1) = 0,
which implies that 𝑥 − 𝛼1 is a factor of 𝑓 in 𝐾1[𝑥]. Ɪn other words,
there exists a polynomial ℎ ∈ 𝐾1[𝑥] such that 𝑓 = (𝑥−𝛼1)ℎ. Notice
that deg(ℎ) = deg(𝑓)−1 = 𝑛−1. The induction hypothesis applied
to ℎ ensures that there exists a field extension𝐾1 ⊆ 𝐿 and elements𝛼2, 𝛼3,… ,𝛼𝑛 ∈ 𝐿 such that ℎ = 𝑎0(𝑥 − 𝛼2)(𝑥 − 𝛼3)⋯(𝑥 − 𝛼𝑛). We
see that 𝑓 = 𝑎0(𝑥 − 𝛼1)(𝑥 − 𝛼2)⋯(𝑥 − 𝛼𝑛), so 𝑓 splits over 𝐿.

Ⅽopyright © 2026 by Gregory G. Smith
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2.1 Fundamental Theorem of Algebra
How do we know that the fieldℂ of complex numbers is a splitting
field for every nonconstant polynomial 𝑓 ∈ ℂ[𝑥]?
2.1.0 Proposition. The following are equivalent:
a. Every nonconstant 𝑓 ∈ ℂ[𝑥] has at least one root inℂ.
b. Every nonconstant 𝑓 ∈ ℂ[𝑥] splits completely overℂ.
c. Every nonconstant 𝑓 ∈ ℝ[𝑥] has at least one root inℂ.
Proof.
a⇒ b: We proceed by induction on 𝑛 ∶= deg(𝑓). When 𝑛 = 1, we
have 𝑓 = 𝑎𝑥 + 𝑏 = 𝑎(𝑥 − (−𝑏/𝑎)), so 𝑓 splits completely overℂ.
Suppose that 𝑛 > 1. When 𝑓 ∈ ℂ[𝑥] has degree 𝑛, part a

implies that 𝑓(𝛼) = 0 for some 𝛼 ∈ ℂ. Ɪt follows that there
exists𝑔 ∈ ℂ[𝑥] such that𝑓 = (𝑥−𝛼)𝑔 anddeg(𝑔) = 𝑛−1. Hence,
the induction hypothesis implies that 𝑔 splits completely overℂ
and 𝑓 = (𝑥 − 𝛼)𝑔 shows that the same is true for 𝑓.

b⇒ c: Sinceℝ ⊂ ℂ is implication is trivial.
c⇒ a: Ⅼet 𝑓 = 𝑎0𝑥𝑛 +𝑎1𝑥𝑛−1 +⋯𝑎𝑛 ∈ ℂ[𝑥]with 𝑎0 ≠ 0. Ɪt suffices
to show that 𝑓 has a root inℂ. Setting ℎ∶= 𝑓𝑓, observe thatℎ = 𝑓𝑓 = 𝑓𝑓 = 𝑓𝑓 = ℎ ,
so ℎ ∈ ℝ[𝑥]. By Part c, there exists 𝛼 ∈ ℂ such that ℎ(𝛼) = 0.
Ɪt follows that 𝑓(𝛼)𝑓(𝛼) = 0. Since ℂ is a domain, we deduce
that either 𝑓(𝛼) = 0 or 𝑓(𝛼) = 0. Ɪn the first case, 𝛼 is a root of𝑓 and, in the second, 𝑓(𝛼) = 𝑓(𝛼) = 0
and 𝛼 is a root of 𝑓.

2.1.1 Proposition. Every polynomial 𝑓 ∈ ℝ[𝑥] of odd degree has at
least one root inℝ.
Proof. Ⅼet 𝑓 ∈ ℝ[𝑥] be a polynomial of odd degree. We can assume
that 𝑓 is monic by multiplying 𝑓 by a suitable nonzero constant.
Hence, we have𝑓 = 𝑥𝑛+𝑎1𝑥𝑛−1+𝑎2𝑥𝑛−2+⋯+𝑎𝑛−1𝑥+𝑎𝑛 where the
integer𝑛 is odd and𝑎1, 𝑎2,… ,𝑎𝑛 ∈ ℝ. Set𝑀∶= |𝑎1|+|𝑎2|+⋯ |𝑎𝑛|+1.
Ɪt follow that||𝑎1𝑀𝑛−1 + 𝑎2𝑀𝑛−2 +⋯+ 𝑎𝑛−1𝑀 + 𝑎𝑛||⩽ |𝑎1|𝑀𝑛−1 + |𝑎2|𝑀𝑛−2 +⋯+ |𝑎𝑛−1|𝑀 + |𝑎𝑛|⩽( |𝑎1| + |𝑎2| +⋯+ |𝑎𝑛|)𝑀𝑛−1 < 𝑀𝑛 .
Hence, we obtain𝑓(𝑀) = 𝑀𝑛 + (𝑎1𝑀𝑛−1 + 𝑎2𝑀𝑛−2 +⋯+ 𝑎𝑛−1𝑀 + 𝑎𝑛) > 0 ,
because the expression in parentheses has absolute value less than𝑀𝑛. We also see that𝑓(−𝑀) = −𝑀𝑛 + (𝑎1(−𝑀)𝑛−1 + 𝑎2(−𝑀)𝑛−2 +⋯+ 𝑎𝑛) < 0 ,
because 𝑛 is odd and the expression in parenthesis has absolute
value less than𝑀𝑛. Ɪn summary, we have 𝑓(−𝑀) < 0 < 𝑓(𝑀).

Ⅽopyright © 2026 by Gregory G. Smith
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Since 𝑓 ∈ ℝ[𝑥] is continuous, the Ɪntermediate Ⅴalue Theorem
guarantees that there exists 𝑐 ∈ (−𝑀,𝑀) such that 𝑓(𝑐) = 0. Ɪn
other words, 𝑓 has a real root.

The Ɪntermediate Ⅴalue Theorem
depends on the completeness of the
real numbers, so one could argue that
the Fundamental Theorem of Algebra
is really a theorem in analysis or
topology.2.1.2 Ⅼemma. Every quadratic inℂ[𝑥] splits completely overℂ.

Proof. Given 𝑓 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 ∈ ℂ[𝑥] with 𝑎 ≠ 0, the roots of 𝑓 are12𝑎 (−𝑏±√𝑏2 − 4𝑎𝑐). Since every complex number has a square root
inℂ, we deduce that 𝑓 splits completely overℂ.
2.1.3 Fundamental Theoremof Algebra (Girard 1649, Argand 1813).
Every nonconstant polynomial 𝑓 ∈ ℂ[𝑥] splits completely overℂ.
Proof. By Proposition 2.1.0, it suffices to prove that every 𝑓 ∈ ℝ[𝑥]
of positive degree 𝑛 has at least one root inℂ. Ⅼet 𝑛 = 2𝑚𝑘, where 𝑘
is odd and𝑚 ∈ ℕ. We proceed by induction on𝑚. Proposition 2.1.1
shows that a polynomial of odd degree in ℝ[𝑥] has a root in ℂ, so
the base case holds.

This strategy appears in Ⅼ. Euler,
Recherches sur les racines imaginaires
des équations, Ⅿém. Acad. Roy. Sci.
Berlin, 5 (1749) 222–288.

Suppose that𝑚 > 0. Regarding 𝑓 as a polynomial inℂ[𝑥], there
exists a field extension ℂ ⊆ 𝐿 such that 𝑓 splits completely over 𝐿.
Ⅼet 𝛼1, 𝛼2,… ,𝛼𝑛 ∈ 𝐿 denote the roots of 𝑓. For all 𝜆 ∈ ℝ, consider𝑔𝜆(𝑥)∶= ∏1⩽𝑗<𝑘⩽𝑛(𝑥 − (𝛼𝑗 + 𝛼𝑘) + 𝜆𝛼𝑗𝛼𝑘) .
which has degree (𝑛2 ) = 12𝑛(𝑛 − 1). We first claim that 𝑔 ∈ ℝ[𝑥]. By
construction, 𝑔𝜆 is invariant under any transposition of the roots, so
its coefficients are symmetric polynomials in the roots. Since𝜆 ∈ ℝ,
Ⅽorollary 1.1.5 establishes that 𝑔𝜆 ∈ ℝ[𝑥].
Since 𝑛 = 2𝑚𝑘, the degree of 𝑔𝜆 is12𝑛(𝑛 − 1) = 12(2𝑚𝑘)(2𝑚𝑘 − 1) = 2𝑚−1𝑘(2𝑚𝑘 − 1) .

Since 𝑘 is odd and𝑚 > 0, the integer 𝑘(2𝑚𝑘 − 1) is also odd. Even
though 𝑔𝜆 has larger degree than 𝑓, the exponent of 2 has been re‑
duced by one. Ɪt follow that, for all 𝜆 ∈ ℝ, the induction hypothesis
ensures that 𝑔𝜆 has a root in ℂ. By construction, the roots of 𝑔𝜆
are 𝛼𝑗 + 𝛼𝑘 − 𝜆𝛼𝑗𝛼𝑘. Ɪn other words, for all 𝜆 ∈ ℝ, we can find
a pair (𝑗, 𝑘) such that 1 ⩽ 𝑗 < 𝑘 ⩽ 𝑛 and 𝛼𝑗 + 𝛼𝑘 − 𝜆𝛼𝑗𝛼𝑘 ∈ ℂ.
Although the pair (𝑗, 𝑘) might depend on 𝜆, as we range over the
infinitely many possibilities of 𝜆, there are only finitely many pos‑
sibilities for the corresponding pair (𝑗, 𝑘). Hence, there must exist𝜆 ≠ 𝜇 inℝ that use the same pair (𝑗, 𝑘), so 𝛼𝑗 +𝛼𝑘 −𝜆𝛼𝑗𝛼𝑘 ∈ ℂ and𝛼𝑗 + 𝛼𝑘 − 𝜇𝛼𝑗𝛼𝑘 ∈ ℂ. Subtraction gives(𝛼𝑗 + 𝛼𝑘 − 𝜆𝛼𝑗𝛼𝑘) − (𝛼𝑗 + 𝛼𝑘 − 𝜇𝛼𝑗𝛼𝑘) = (𝜇 − 𝜆)𝛼𝑗𝛼𝑘 ∈ ℂ ,
which implies that 𝛼𝑗𝛼𝑘 ∈ ℂ. The equation 𝛼𝑗 + 𝛼𝑘 − 𝜆𝛼𝑗𝛼𝑘 ∈ ℂ
thereby implies that 𝛼𝑗 + 𝛼𝑘 ∈ ℂ.
Finally, consider the quadratic polynomial(𝑥 − 𝛼𝑗)(𝑥 − 𝛼𝑘) = 𝑥2 − (𝛼𝑗 + 𝛼𝑘)𝑥 + 𝛼𝑗𝛼𝑘 ∈ ℂ[𝑥] .

Ⅼemma 2.1.2 shows that the roots of this quadratic polynomial lie
in ℂ. However, the roots are clearly 𝛼𝑗 and 𝛼𝑘. Therefore, 𝑓 has a
complex root.

Ⅽopyright © 2026 by Gregory G. Smith
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2.2 Ⅿinimal Polynomials
How are elements in a field extension related to a subfield? There
is a basic dichotomy.

2.2.0 Ⅾefinition. Ⅼet 𝐿 be a field extension of a field𝐾. An element𝛼 ∈ 𝐿 is algebraic over 𝐾 if there exists a nonconstant polynomial𝑓 ∈ 𝐾[𝑥] such that 𝑓(𝛼) = 0. Otherwise the element 𝛼 ∈ 𝐿 is
transcendental over 𝐾.
2.2.1 Problem. Show that √2 +√3 is algebraic overℚ.
Solution. Ⅽonsider the polynomial(𝑥 − √2 −√3)(𝑥 − √2 +√3)(𝑥 + √2 −√3)(𝑥 + √2 +√3)= (𝑥2 − 2√2𝑥 − 1)(𝑥2 + 2√2𝑥 − 1)= 𝑥4 − 10𝑥2 + 1 .
Since √2 +√3 is a root of a nonconstant polynomial in ℚ[𝑥], it is
algebraic overℚ.
2.2.2 Ⅼemma/Ⅾefinition. When 𝛼 ∈ 𝐿 is algebraic over𝐾, there exists
a unique nonconstant monic polynomial 𝑝 ∈ 𝐾[𝑥] such that
(root) The element 𝛼 is a root of 𝑝.

(minimal) For all 𝑓 ∈ 𝐾[𝑥] having 𝛼 as a root, 𝑝 divides 𝑓.
The polynomial 𝑝 is called theminimal polynomial of 𝛼 over𝐾.
Proof. Among all nonconstant polynomials in 𝐾[𝑥] having 𝛼 as a
root, there is one of smallest degree, say 𝑝. Rescaling if necessary,
we may assume that 𝑝 is monic.

We are using the well‑ordering of the
setℕ. The hypothesis that 𝛼 ∈ 𝐿 is
algebraic means that there is a
nonconstant polynomial in 𝐾[𝑥]
having 𝛼 as a root.Suppose that 𝑓 ∈ 𝐾[𝑥] with 𝑓(𝛼) = 0. Ⅾivision with remainder

produces 𝑞, 𝑟 ∈ 𝐾[𝑥] such that 𝑓 = 𝑞𝑝 + 𝑟 and either 𝑟 = 0 or
deg(𝑟) < deg(𝑝). Evaluating at 𝛼 gives0 = 𝑓(𝛼) = 𝑞(𝛼)𝑝(𝛼) + 𝑟(𝛼) = 𝑟(𝛼) .
Ɪf 𝑟 were nonzero, then it would be a polynomial of degree less that𝑝 having 𝛼 as a root, which would contradict the choice of 𝑝. We
conclude that 𝑟 = 0 and 𝑝 divides 𝑓.
2.2.3 Proposition. Ⅼet 𝛼 ∈ 𝐿 be an algebraic element over 𝐾 with min‑
imal polynomial 𝑝 ∈ 𝐾[𝑥]. For every nonconstant monic polynomial𝑓 ∈ 𝐾[𝑥], the following are equivalent:
a. 𝑓 = 𝑝,
b. 𝑓 is a polynomial of minimal degree such that 𝑓(𝛼) = 0,
c. 𝑓 is irreducible over𝐾 and 𝑓(𝛼) = 0.
Proof.
a⇔ b: This follows from the proof of Ⅼemma 2.2.2.
b⇔ c: We claim that the minimal polynomial 𝑓 is irreducible over𝐾. Suppose that 𝑓 = 𝑔ℎ where 𝑔, ℎ ∈ 𝐾[𝑥] have smaller degree
that 𝑝. Ɪt would follows that 0 = 𝑓(𝛼) = 𝑔(𝛼)ℎ(𝛼) which would
imply that 𝑔(𝛼) = 0 or ℎ(𝛼) = 0. Since this would contradict b,
the polynomial 𝑓must be irreducible.
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c⇔ b: Suppose that 𝑓(𝛼) = 0 and 𝑓 is irreducible. Ⅼemma 2.2.2
shows that 𝑝 divides 𝑓, so 𝑓 = 𝑝ℎ for some ℎ ∈ 𝐾[𝑥]. Since 𝑓
is irreducible and 𝑝 is nonconstant, ℎmust be a constant. Thus,
we deduce that 𝑓 = 𝑝 because both 𝑓 and 𝑝 are monic.

2.2.4 Remark. The irrationality of √2 implies that 𝑥2 − 2 ∈ ℚ[𝑥] is
the minimal polynomial of √2 overℚ.
2.2.5 Problem. Ⅾemonstrate that 𝑥4 − 10𝑥2 + 1 is the the minimal
polynomial of √2 +√3 overℚ.
Solution. By Problem 2.2.1 and Proposition 2.2.3, it suffices to show
that 𝑓∶= 𝑥4 − 10𝑥2 + 1 is irreducible overℚ. By the Gauss Ⅼemma,
this is equivalent to proving that 𝑓 is irreducible over ℤ. Reducing
modulo 3, the polynomial𝑓 becomes 𝑥4+2𝑥2+1 ≡ (𝑥2+1)2 ∈ 𝔽3[𝑥].
Observe that 𝑥2 + 1 is irreducible over 𝔽3, because02 + 1 ≡ 1 mod 3 , 12 + 1 ≡ 2 mod 3 , 22 + 1 ≡ 5 ≡ 2 mod 3 .
The image of 𝑓 in 𝔽3[𝑥] is the square of an irreducible polynomial,
so any quadratic factor must be an associate of 𝑥2 + 1. Ⅼifting such
a factorization back to ℤ[𝑥] would force 𝑓 to be the square of a
quadratic polynomial ofℚ. Ⅽomparing coefficients, the equation𝑥4−10𝑥2 +1 = (𝑥2 +𝑎𝑥+𝑏)2 = 𝑥4+2𝑎𝑥3 +(𝑎2 +2𝑏)𝑥2 +2𝑎𝑏𝑥+𝑏2 ,
gives 2𝑎 = 0, 𝑎2 + 2𝑏 = −10, 2𝑎𝑏 = 0, and 𝑏2 = 1, so 𝑎 = 0, 𝑏 = −5,
and 52 = 1which is absurd. We see that 𝑓 is irreducible overℚ, and𝑥4 − 10𝑥2 + 1 is the the minimal polynomial of √2 +√3 overℚ.
2.2.6Notation. Ⅼet𝐾 ⊆ 𝐿 be a field extension. For all field elements𝛼1, 𝛼2,… ,𝛼𝑛 ∈ 𝐿, we define𝐾[𝛼1, 𝛼2,… ,𝛼𝑛]∶= {ℎ(𝛼1, 𝛼2,… ,𝛼𝑛) || ℎ ∈ 𝐾[𝑥1, 𝑥2,… ,𝑥𝑛]} .
2.2.7 Ⅼemma. Ⅼet 𝐾 ⊂ 𝐿 be a field extension. For every 𝛼 ∈ 𝐿 that
is algebraic over 𝐾 with minimal polynomial 𝑝 ∈ 𝐾[𝑥], there exists a
unique 𝐾‑algebra isomorphism 𝐾[𝑥] / ⟨𝑝⟩ ≅ 𝐾[𝛼] that sends the coset𝑥 + ⟨𝑝⟩ to 𝛼.
Proof. Ⅽonsider the evaluation map 𝜑∶ 𝐾[𝑥]→𝐿 that sends 𝑥 to 𝛼.
By construction, the image of 𝜑 is 𝐾[𝛼].
We claim that Ker(𝜑) = ⟨𝑝⟩. For all 𝑔 ∈ 𝐾[𝑥], we have𝜑(𝑔𝑝) = 𝜑(𝑔)𝜑(𝑝) = 𝑔(𝛼)𝑝(𝛼) = 𝑔(𝛼)0 = 0 ,

so ⟨𝑝⟩ ⊆ Ker(𝜑). Ⅽonversely, suppose that 𝑓 ∈ Ker(𝜑). Ɪt follows
that 𝑓(𝛼) = 0, so Ⅼemma 2.2.2 implies that 𝑓 is a multiple of 𝑝. We
deduce that Ker(𝜑) ⊆ ⟨𝑝⟩, so Ker(𝜑) = ⟨𝑝⟩.
Given the image and kernel of𝜑, the First ꞮsomorphismTheorem

shows that the 𝐾‑algebra homomorphism 𝜑∶ 𝐾[𝑥]→𝐿[𝛼] induces
an the 𝐾‑algebra isomorphism

𝜑∶ 𝐾[𝑥]⟨𝑝⟩ →𝐾[𝛼]
where 𝜑(𝑥) = 𝜑(𝑥) = 𝛼.
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