2 Roots of Polynomials

By passing to a suitable extension of the coefficient field, one can
ensure that a univariate polynomial has roots. For the field C of
complex numbers, we also show that no extension is required.

2.0 Existence of Roots

How can we enlarge a field to guarantee that a polynomial has a
root? We start with two perspectives on the complex numbers.

2.0.0 Remark (Hamilton 1835). The field C of complex numbers is
the set R? equipped with addition and multiplication defined by
(a,b) + (c,d)=(a+c,b+d)
(a,b)(c,d) = (ac — bd,ad + bc).
One verifies that these operations make R? into a field with (1, 0) as
the multiplicative identity. Since (0,1)(0,1) = (-1,0) = —(1,0), we
seti:= (0,1). We identify R with the subset {(a,0) € R* | a € R}.

2.0.1 Remark (Cauchy 1847). Consider the quotient R[x] / (x? +1).

Applying the Euclidean algorithm, we see that the remainder of any

polynomial in R[x] modulo x2+1 has the form a+bx wherea, b € R.

Hence, the set {a + bx | a,b € R} of all polynomials in R[x] having
degree at most 1is a complete system of distinct representatives for
the cosets in the quotient ring R[x] /(x? + 1). Moreover, we have
(a+bx)+(c+dx)=(a+c)+(b+d)x mod x> +1
(a + bx)(c +dx) = (ac) + (ad + bc)x + (bd)x?
= (ac—bd) + (ad + bc)x mod x> +1.

Writing 77: R[x] = R[x] /(x? + 1) for the quotient map, it follows
thati:= 7(x) = x + (x? + 1). It remains to show that this quotient
ring is a field; see the subsequent proposition. We identify R with
the subset {a + 0x € R[x] | a € R}.

Fortuitously, the quotients of a univariate polynomial ring that
are fields have already been characterized.

2.0.2 Proposition. Let K be a field. For all polynomials f € K[x], the
following are equivalent.

a. The polynomial f is irreducible in K[x].

b. Theideal(f):={fg | g € K[x]} is a maximal ideal.

c. The quotient ring K[x] / (f) is a field.

Comment on proof. See MATH 210. O
This discussion motivates the following definition.

2.0.3 Definition. Given a ring homomorphism ¢: K — L between
fields, we say that L is a field extension of K. We identify K with its
image ¢(K) :={¢p(a) € L |« € K} and write K C L.

Armed with this notion, we demonstrate that every irreducible
polynomial has a root in a field extension.
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2.0.4 Proposition. LetK be a field. For all irreducible f € K|[x], there
exists a field extension K C L and a € L such that f(a) = 0.

Proof. Consider the principalideal I := (f)in K[x] and the quotient
ring L := K[x] /I. Proposition 2.0.2 shows that the quotient L is
a field. The composition of the canonical inclusion 7: K - K[x]
with the canonical surjection 77: K[x] - K[x] / I produces a ring

homomorphism from K to L. Thus, we have a field extension K C L.

It remains to show that there exists a € L such that f(a) = 0. Set
a:= x+1I. Suppose that f = ayx" +a;x" ' +--- + a,_,x + a, where
ay, a4, -..,a, € K. It follows that

fla) =(ag+Da™ + (a; +Da* ! + - + (a, +Da®
=(ap+Dx+D"+ (a; +D(x+D" 1+ - + (a, +D(x+1)°
=(@ox"+a; x" 1+ +a,) + 1
= f+I=0+I,

Since 0 + I is the additive identity, we deduce that f(a) = 0. O

Division with remainder implies that field element o € Lisaroot

of a polynomial f € L[x] if and only if x — « is a factor of f in L[x].

Extending this idea leads to the following notion.

2.0.5 Definition. The polynomial f € K|[x] splits completely over L if
there exists a field extension K C L and elements &, &, ..., &, € L
such that f = ag(x — a;)(x — ) --- (x — a,,) where a, € K.

The existence of these larger fields is essentially a consequence
of the existence of a single root.

2.0.6 Theorem. LetK be a field. For any nonconstant f € K|[x], there
is a field extension K C L such that f splits completely over L.

Proof. We proceed by induction on n := deg(f). When n = 1, it
follows that f = ayx + a; where a, # 0 and a,,a, € K. Setting
L = K and a; = —a,/a, implies that f = ay(x — «;), which shows
that the base case holds.

Suppose that deg(f) = n > 1. Since K is a field, the polynomial
ring K[x] is a unique factorization domain; see MATH 210. Hence, f
has an irreducible factor g. Applying Proposition 2.0.4 to g € K[x],
there exists a field extension K C K; and an element «; € K; such
that g(a;) = 0. Since g is a factor of f, we also have f(a;) = 0,
which implies that x — «; is a factor of f in K;[x]. In other words,
there exists a polynomial h € K;[x] such that f = (x — &t; )h. Notice
that deg(h) = deg(f)—1 = n—1. The induction hypothesis applied
to h ensures that there exists a field extension K; C L and elements
oy, A3, ..., A, € Lsuch that h = ag(x — a,)(x — a3) --- (x — a,). We
seethat f = ap(x —oy)(x —ay) --- (x — &), so f splitsover L. [
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2.1 Fundamental Theorem of Algebra

How do we know that the field C of complex numbers is a splitting
field for every nonconstant polynomial f € C[x]?

2.1.0 Proposition. The following are equivalent:

a. Every nonconstant f € C[x] has at least one root in C.
b. Every nonconstant f € C[x] splits completely over C.
c. Every nonconstant f € R[x] has at least one root in C.

Proof.

a= b: We proceed by induction on n := deg(f). When n = 1, we
have f = ax + b = a(x — (—b/a)), so f splits completely over C.

Suppose that n > 1. When f € C[x] has degree n, part a

implies that f(ax) = 0 for some ¢ € C. It follows that there
exists g € C[x]suchthat f = (x—a)gand deg(g) = n—1. Hence,
the induction hypothesis implies that g splits completely over C
and f = (x — a)g shows that the same is true for f.

b= c: Since R c C is implication is trivial.

c=>a: Let f = aox"+a;x" ' +---a, € C[x] with a, # 0. It suffices
to show that f has arootin C. Setting h := ff, observe that

h=ff=ff=ff=h,
so h € R[x]. By Part c, there exists a € C such that h(a) = 0.
It follows that f(a)f(c) = 0. Since C is a domain, we deduce
that either f(a) = 0 or f(oc) = 0. In the first case, « is a root of
f and, in the second,

fla@)=f(a)=0

and a is a root of f. O

2.1.1 Proposition. Every polynomial f € R[x] of odd degree has at
least one root in R.

Proof. Let f € R[x] be a polynomial of odd degree. We can assume
that f is monic by multiplying f by a suitable nonzero constant.
Hence, we have f = x" +a;x" '+a,x"2+---+a,_,x+a, where the
integer nisoddand a,, a,, ... ,a, € R. Set M := |a;|+|a,|+--- |a,|+]1.
It follow that
e, Mt + a,M" 2 + ... + a,_ 1M + a,,|
Slai M+ jap| M2 4 e+ |, | M+ lay|
<(laal + lag] + -+ + |a, )M < M™.
Hence, we obtain
fM) =M"+ (a;M" ' + a,M" %+ --- +a, ;M +a,) >0,

because the expression in parentheses has absolute value less than
M™". We also see that

F(=M) = —M" + (a;(-M)""" + a,(-M)""* + -+ + a,) <0,
because n is odd and the expression in parenthesis has absolute

value less than M". In summary, we have f(—M) < 0 < f(M).

Copyright © 2026 by Gregory G. Smith



Since f € R[x] is continuous, the Intermediate Value Theorem
guarantees that there exists ¢ € (—M, M) such that f(c) = 0. In
other words, f has a real root. O

2.1.2 Lemma. Every quadratic in C[x] splits completely over C.

Proof. Given f = ax? + bx + ¢ € C[x] with a # 0, the roots of f are
%(—b + Vb2 — 4ac). Since every complex number has a square root
in C, we deduce that f splits completely over C. O

2.1.3 Fundamental Theorem of Algebra (Girard 1649, Argand 1813).
Every nonconstant polynomial f € C[x] splits completely over C.

Proof. By Proposition 2.1.0, it suffices to prove that every f € R[x]
of positive degree n has at least one rootin C. Let n = 2™k, where k
is odd and m € N. We proceed by induction on m. Proposition 2.1.1
shows that a polynomial of odd degree in R[x] has a root in C, so
the base case holds.

Suppose that m > 0. Regarding f as a polynomial in C[x], there
exists a field extension C C L such that f splits completely over L.

Let ay, &, ..., &, € L denote the roots of f. For all 1 € R, consider
g(x) = [ (x=(a;+ap+iqay).
1<j<k<n

which has degree (;) = 3n(n — 1). We first claim that g € R[x]. By
construction, g; is invariant under any transposition of the roots, so
its coefficients are symmetric polynomials in the roots. Since 4 € R,
Corollary 1.1.5 establishes that g; € R[x].
Since n = 2™k, the degree of g; is
in(n—1) = 3(2"k)(2"k — 1) = 2" 'k(2"k — 1).
Since k is odd and m > 0, the integer k(2"k — 1) is also odd. Even
though g; has larger degree than f, the exponent of 2 has been re-
duced by one. It follow that, for all 1 € R, the induction hypothesis
ensures that g; has a root in C. By construction, the roots of g;
are a; + ay — Aajay. In other words, for all A € R, we can find
a pair (j,k) such that 1 € j < k < nand a; + o, — Aaja, € C.
Although the pair (j, k) might depend on A4, as we range over the
infinitely many possibilities of A, there are only finitely many pos-
sibilities for the corresponding pair (j, k). Hence, there must exist
A # uin R that use the same pair (j, k), so o + ot — Aaja, € C and
a; + ay — ua;ay € C. Subtraction gives
(aj + o — Aajoy) — (@ + o — pajoy) = (U — Dajoy € C,
which implies that a;a € C. The equation a; + a; — Aaja, € C
thereby implies that «; + a, € C.
Finally, consider the quadratic polynomial
(x —aj))(x —ap) = x> = (o + a)x + ooy € Clx].
Lemma 2.1.2 shows that the roots of this quadratic polynomial lie

in C. However, the roots are clearly a; and a;. Therefore, f has a
complex root. O
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2.2 Minimal Polynomials

How are elements in a field extension related to a subfield? There
is a basic dichotomy.

2.2.0 Definition. Let L be a field extension of a field K. An element
o € L is algebraic over K if there exists a nonconstant polynomial
f € K[x] such that f(a) = 0. Otherwise the element & € L is
transcendental over K.

2.2.1 Problem. Show that y/2 + 1/3 is algebraic over Q.

Solution. Consider the polynomial

(x = V2= V3)(x = V2+V3)(x + V2= V3)(x + V2 +1/3)
= (x? —2v2x = 1)(x2 + 2V2x — 1)
=x*—10x? +1.
Since \/E + \/§ is a root of a nonconstant polynomial in Q[x], it is
algebraic over Q. O

2.2.2 Lemma/Definition. When o € L is algebraic over K, there exists
a unique nonconstant monic polynomial p € K[x] such that
(root) The element « is a root of p.
(minimal) Forall f € K[x] having & as a root, p divides f.
The polynomial p is called the minimal polynomial of & over K.

Proof. Among all nonconstant polynomials in K[x] having a as a
root, there is one of smallest degree, say p. Rescaling if necessary,
we may assume that p is monic.

Suppose that f € K[x] with f(a) = 0. Division with remainder
produces q,r € K[x] such that f = gp + r and either r = 0 or
deg(r) < deg(p). Evaluating at a gives

0 = f(a) = q(a)p(a) + r(a) = r(a).
If r were nonzero, then it would be a polynomial of degree less that
p having « as a root, which would contradict the choice of p. We
conclude that r = 0 and p divides f. O

2.2.3 Proposition. Leta € L be an algebraic element over K with min-
imal polynomial p € K|[x]. For every nonconstant monic polynomial
f € K|[x], the following are equivalent:

a. f=p,

b. f is a polynomial of minimal degree such that f(a) = 0,

c. f isirreducible over K and f(cx) = 0.

Proof.

a < b: This follows from the proof of Lemma 2.2.2.

b & c¢: We claim that the minimal polynomial f is irreducible over
K. Suppose that f = gh where g, h € K[x] have smaller degree
that p. It would follows that 0 = f(a) = g(a)h(a) which would
imply that g(a) = 0 or h(a) = 0. Since this would contradict b,
the polynomial f must be irreducible.
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c < b: Suppose that f(a) = 0 and f is irreducible. Lemma 2.2.2
shows that p divides f, so f = ph for some h € K[x]. Since f
is irreducible and p is nonconstant, h must be a constant. Thus,
we deduce that f = p because both f and p are monic. O

2.2.4 Remark. The irrationality of v/2 implies that x? — 2 € Q[x] is
the minimal polynomial of V2 over Q.

2.2.5 Problem. Demonstrate that x* — 10x2 + 1 is the the minimal
polynomial of v/2 + /3 over Q.

Solution. By Problem 2.2.1 and Proposition 2.2.3, it suffices to show
that f := x* — 10x? + 1 is irreducible over Q. By the Gauss Lemma,
this is equivalent to proving that f is irreducible over Z. Reducing
modulo 3, the polynomial f becomes x*+2x?+1 = (x2+1)? € F5[x].
Observe that x? + 1 is irreducible over [, because

024+1=1 mod3, 1241=2 mod3, 224+1=5=2 mod 3.

The image of f in [F;[x] is the square of an irreducible polynomial,
so any quadratic factor must be an associate of x? + 1. Lifting such
a factorization back to Z[x] would force f to be the square of a
quadratic polynomial of Q. Comparing coefficients, the equation

x*—10x2+1 = (x*+ax+b)? = x*+2ax3+ (a®? +2b)x* + 2abx + b?,
gives 2a = 0,a% + 2b = —10,2ab = 0,and b> = 1,soa = 0, b = -5,
and 52 = 1 which is absurd. We see that f is irreducible over Q, and
x*—10x2 + 1 is the the minimal polynomial of v/2 + /3 over Q. O

2.2.6 Notation. Let K C Lbe afield extension. For all field elements
0y, Ay, ..., &, € L, we define

Klay, o, ... 0] :={h(ay, o, ..., 0,) | h € K[x1, X, ..., X,]}.

2.2.7 Lemma. Let K C L be a field extension. For every a € L that
is algebraic over K with minimal polynomial p € K|[x], there exists a
unique K -algebra isomorphism K|[x] / (p) = K[«] that sends the coset
X+ (p) to .

Proof. Consider the evaluation map ¢ : K[x] — L that sends x to a.
By construction, the image of ¢ is K[a].
We claim that Ker(¢) = (p). For all g € K[x], we have

¢(gp) = p(&)e(p) = g(a)p(a) = g(a)0 =0,
so (p) C Ker(g). Conversely, suppose that f € Ker(g). It follows
that f(ar) = 0, so Lemma 2.2.2 implies that f is a multiple of p. We
deduce that Ker(¢) C (p), so Ker(¢) = (p).

Given the image and kernel of ¢, the First Isomorphism Theorem
shows that the K-algebra homomorphism ¢ : K[x] — L[«] induces
an the K-algebra isomorphism

~. Klx]
Y2
where @(x) = ¢p(x) = a. O

- K[a]

Roots of Polynomials 22

Copyright © 2026 by Gregory G. Smith



	Cubic Equations
	Cardano's Formulas
	Permutations of the Roots
	Cubic Equations over the Real Numbers

	Symmetric Polynomials
	Polynomials in Several Variables
	Symmetric Polynomials
	The Discriminant

	Roots of Polynomials
	Existence of Roots
	Fundamental Theorem of Algebra
	Minimal Polynomials

	Field Extensions
	Elements of Extension Fields
	Irreducible Polynomials
	Degree of an Extension

	Normality
	Algebraic Extensions
	Splitting Fields
	Normal Extensions

	Separability
	Separable Extensions
	Theorem of the Primitive Element
	Definition of the Galois Group

	Galois Groups
	Galois Groups of Splitting Fields
	Permutations of the Roots
	Examples of Galois Groups

	Galois Extensions
	Galois Closures
	Conjugates Fields
	Normal Subgroups and Normal Extensions

	Galois Correspondence
	Fundamental Theorem of Galois Theory
	The Discriminant
	The Universal Extension


