

2 Roots of Polynomials

Copyright © 2026, Gregory G. Smith
Last Updated: 2026-01-18

By passing to a suitable extension of the coefficient field, one can ensure that a univariate polynomial has roots. For the field \mathbb{C} of complex numbers, we also show that no extension is required.

2.0 Existence of Roots

How can we enlarge a field to guarantee that a polynomial has a root? We start with two perspectives on the complex numbers.

2.0.0 Remark (Hamilton 1835). The field \mathbb{C} of complex numbers is the set \mathbb{R}^2 equipped with addition and multiplication defined by

$$\begin{aligned}(a, b) + (c, d) &= (a + c, b + d) \\ (a, b)(c, d) &= (ac - bd, ad + bc).\end{aligned}$$

One verifies that these operations make \mathbb{R}^2 into a field with $(1, 0)$ as the multiplicative identity. Since $(0, 1)(0, 1) = (-1, 0) = -(1, 0)$, we set $i := (0, 1)$. We identify \mathbb{R} with the subset $\{(a, 0) \in \mathbb{R}^2 \mid a \in \mathbb{R}\}$.

2.0.1 Remark (Cauchy 1847). Consider the quotient $\mathbb{R}[x] / \langle x^2 + 1 \rangle$. Applying the Euclidean algorithm, we see that the remainder of any polynomial in $\mathbb{R}[x]$ modulo $x^2 + 1$ has the form $a + bx$ where $a, b \in \mathbb{R}$. Hence, the set $\{a + bx \mid a, b \in \mathbb{R}\}$ of all polynomials in $\mathbb{R}[x]$ having degree at most 1 is a complete system of distinct representatives for the cosets in the quotient ring $\mathbb{R}[x] / \langle x^2 + 1 \rangle$. Moreover, we have

$$\begin{aligned}(a + bx) + (c + dx) &\equiv (a + c) + (b + d)x \pmod{x^2 + 1} \\ (a + bx)(c + dx) &\equiv (ac) + (ad + bc)x + (bd)x^2 \\ &\equiv (ac - bd) + (ad + bc)x \pmod{x^2 + 1}.\end{aligned}$$

Writing $\pi: \mathbb{R}[x] \rightarrow \mathbb{R}[x] / \langle x^2 + 1 \rangle$ for the quotient map, it follows that $i := \pi(x) = x + \langle x^2 + 1 \rangle$. It remains to show that this quotient ring is a field; see the subsequent proposition. We identify \mathbb{R} with the subset $\{a + 0x \in \mathbb{R}[x] \mid a \in \mathbb{R}\}$.

Fortunately, the quotients of a univariate polynomial ring that are fields have already been characterized.

2.0.2 Proposition. *Let K be a field. For all polynomials $f \in K[x]$, the following are equivalent.*

- The polynomial f is irreducible in $K[x]$.*
- The ideal $\langle f \rangle := \{fg \mid g \in K[x]\}$ is a maximal ideal.*
- The quotient ring $K[x] / \langle f \rangle$ is a field.*

Comment on proof. See MATH 210. □

This discussion motivates the following definition.

2.0.3 Definition. Given a ring homomorphism $\varphi: K \rightarrow L$ between fields, we say that L is a field extension of K . We identify K with its image $\varphi(K) := \{\varphi(\alpha) \in L \mid \alpha \in K\}$ and write $K \subseteq L$.

Armed with this notion, we demonstrate that every irreducible polynomial has a root in a field extension.

This algebraic description of the complex numbers appears in W.R. Hamilton, *Theory of Conjugate Functions, or Algebraic Couples; with a Preliminary Essay on Algebra as the Science of Pure Time*, Trans. R. Irish Acad., 17 (1837) 293–422.

This alternative description of the complex numbers appears in A.-L. Cauchy, *Mémoire sur une nouvelle théorie des imaginaires, et sur les racines symboliques des équations et des équivalences*, C. R. Acad. Sci. Paris, 24 (1847) 1120–1130.

The ring homomorphism $\varphi: K \rightarrow L$ satisfies $\varphi(1_K) = 1_L$. Since the only ideals in the field K are $\langle 0 \rangle = \{0_K\}$ and $\langle 1 \rangle = K$, it follows that $\text{Ker}(\varphi) = \langle 0 \rangle$, so the map φ is injective.

2.0.4 Proposition. *Let K be a field. For all irreducible $f \in K[x]$, there exists a field extension $K \subseteq L$ and $\alpha \in L$ such that $f(\alpha) = 0$.*

Proof. Consider the principal ideal $I := \langle f \rangle$ in $K[x]$ and the quotient ring $L := K[x] / I$. Proposition 2.0.2 shows that the quotient L is a field. The composition of the canonical inclusion $\eta: K \rightarrow K[x]$ with the canonical surjection $\pi: K[x] \rightarrow K[x] / I$ produces a ring homomorphism from K to L . Thus, we have a field extension $K \subseteq L$.

It remains to show that there exists $\alpha \in L$ such that $f(\alpha) = 0$. Set $\alpha := x + I$. Suppose that $f = a_0x^n + a_1x^{n-1} + \dots + a_{n-1}x + a_n$ where $a_0, a_1, \dots, a_n \in K$. It follows that

$$\begin{aligned} f(\alpha) &= (a_0 + I)\alpha^n + (a_1 + I)\alpha^{n-1} + \dots + (a_n + I)\alpha^0 \\ &= (a_0 + I)(x + I)^n + (a_1 + I)(x + I)^{n-1} + \dots + (a_n + I)(x + I)^0 \\ &= (a_0x^n + a_1x^{n-1} + \dots + a_n) + I \\ &= f + I = 0 + I, \end{aligned}$$

Since $0 + I$ is the additive identity, we deduce that $f(\alpha) = 0$. \square

The addition and multiplication operations in a quotient ring are inherited from the ambient ring.

Division with remainder implies that field element $\alpha \in L$ is a root of a polynomial $f \in L[x]$ if and only if $x - \alpha$ is a factor of f in $L[x]$. Extending this idea leads to the following notion.

2.0.5 Definition. The polynomial $f \in K[x]$ splits completely over L if there exists a field extension $K \subseteq L$ and elements $\alpha_1, \alpha_2, \dots, \alpha_n \in L$ such that $f = a_0(x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n)$ where $a_0 \in K$.

The existence of these larger fields is essentially a consequence of the existence of a single root.

2.0.6 Theorem. *Let K be a field. For any nonconstant $f \in K[x]$, there is a field extension $K \subseteq L$ such that f splits completely over L .*

Proof. We proceed by induction on $n := \deg(f)$. When $n = 1$, it follows that $f = a_0x + a_1$ where $a_0 \neq 0$ and $a_0, a_1 \in K$. Setting $L = K$ and $\alpha_1 = -a_1/a_0$ implies that $f = a_0(x - \alpha_1)$, which shows that the base case holds.

Suppose that $\deg(f) = n > 1$. Since K is a field, the polynomial ring $K[x]$ is a unique factorization domain; see MATH 210. Hence, f has an irreducible factor g . Applying Proposition 2.0.4 to $g \in K[x]$, there exists a field extension $K \subseteq K_1$ and an element $\alpha_1 \in K_1$ such that $g(\alpha_1) = 0$. Since g is a factor of f , we also have $f(\alpha_1) = 0$, which implies that $x - \alpha_1$ is a factor of f in $K_1[x]$. In other words, there exists a polynomial $h \in K_1[x]$ such that $f = (x - \alpha_1)h$. Notice that $\deg(h) = \deg(f) - 1 = n - 1$. The induction hypothesis applied to h ensures that there exists a field extension $K_1 \subseteq L$ and elements $\alpha_2, \alpha_3, \dots, \alpha_n \in L$ such that $h = a_0(x - \alpha_2)(x - \alpha_3) \dots (x - \alpha_n)$. We see that $f = a_0(x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n)$, so f splits over L . \square

2.1 Fundamental Theorem of Algebra

How do we know that the field \mathbb{C} of complex numbers is a splitting field for every nonconstant polynomial $f \in \mathbb{C}[x]$?

2.1.0 Proposition. *The following are equivalent:*

- a. *Every nonconstant $f \in \mathbb{C}[x]$ has at least one root in \mathbb{C} .*
- b. *Every nonconstant $f \in \mathbb{C}[x]$ splits completely over \mathbb{C} .*
- c. *Every nonconstant $f \in \mathbb{R}[x]$ has at least one root in \mathbb{C} .*

Proof.

a \Rightarrow b: We proceed by induction on $n := \deg(f)$. When $n = 1$, we have $f = ax + b = a(x - (-b/a))$, so f splits completely over \mathbb{C} .

Suppose that $n > 1$. When $f \in \mathbb{C}[x]$ has degree n , part a implies that $f(\alpha) = 0$ for some $\alpha \in \mathbb{C}$. It follows that there exists $g \in \mathbb{C}[x]$ such that $f = (x - \alpha)g$ and $\deg(g) = n-1$. Hence, the induction hypothesis implies that g splits completely over \mathbb{C} and $f = (x - \alpha)g$ shows that the same is true for f .

b \Rightarrow c: Since $\mathbb{R} \subset \mathbb{C}$ implication is trivial.

c \Rightarrow a: Let $f = a_0x^n + a_1x^{n-1} + \dots + a_n \in \mathbb{C}[x]$ with $a_0 \neq 0$. It suffices to show that f has a root in \mathbb{C} . Setting $h := \overline{f\bar{f}}$, observe that

$$\overline{h} = \overline{\overline{f\bar{f}}} = \overline{\bar{f}f} = \overline{f\bar{f}} = h,$$

so $h \in \mathbb{R}[x]$. By Part c, there exists $\alpha \in \mathbb{C}$ such that $h(\alpha) = 0$.

It follows that $f(\alpha)\bar{f}(\alpha) = 0$. Since \mathbb{C} is a domain, we deduce that either $f(\alpha) = 0$ or $\bar{f}(\alpha) = 0$. In the first case, α is a root of f and, in the second,

$$\overline{\bar{f}(\alpha)} = f(\overline{\alpha}) = 0$$

and $\overline{\alpha}$ is a root of f . \square

2.1.1 Proposition. *Every polynomial $f \in \mathbb{R}[x]$ of odd degree has at least one root in \mathbb{R} .*

Proof. Let $f \in \mathbb{R}[x]$ be a polynomial of odd degree. We can assume that f is monic by multiplying f by a suitable nonzero constant. Hence, we have $f = x^n + a_1x^{n-1} + a_2x^{n-2} + \dots + a_{n-1}x + a_n$ where the integer n is odd and $a_1, a_2, \dots, a_n \in \mathbb{R}$. Set $M := |a_1| + |a_2| + \dots + |a_n| + 1$. It follows that

$$\begin{aligned} |a_1M^{n-1} + a_2M^{n-2} + \dots + a_{n-1}M + a_n| \\ \leq |a_1|M^{n-1} + |a_2|M^{n-2} + \dots + |a_{n-1}|M + |a_n| \\ \leq (|a_1| + |a_2| + \dots + |a_n|)M^{n-1} < M^n. \end{aligned}$$

Hence, we obtain

$$f(M) = M^n + (a_1M^{n-1} + a_2M^{n-2} + \dots + a_{n-1}M + a_n) > 0,$$

because the expression in parentheses has absolute value less than M^n . We also see that

$$f(-M) = -M^n + (a_1(-M)^{n-1} + a_2(-M)^{n-2} + \dots + a_n) < 0,$$

because n is odd and the expression in parenthesis has absolute value less than M^n . In summary, we have $f(-M) < 0 < f(M)$.

Since $f \in \mathbb{R}[x]$ is continuous, the Intermediate Value Theorem guarantees that there exists $c \in (-M, M)$ such that $f(c) = 0$. In other words, f has a real root. \square

2.1.2 Lemma. *Every quadratic in $\mathbb{C}[x]$ splits completely over \mathbb{C} .*

Proof. Given $f = ax^2 + bx + c \in \mathbb{C}[x]$ with $a \neq 0$, the roots of f are $\frac{1}{2a}(-b \pm \sqrt{b^2 - 4ac})$. Since every complex number has a square root in \mathbb{C} , we deduce that f splits completely over \mathbb{C} . \square

2.1.3 Fundamental Theorem of Algebra (Girard 1649, Argand 1813). *Every nonconstant polynomial $f \in \mathbb{C}[x]$ splits completely over \mathbb{C} .*

Proof. By Proposition 2.1.0, it suffices to prove that every $f \in \mathbb{R}[x]$ of positive degree n has at least one root in \mathbb{C} . Let $n = 2^m k$, where k is odd and $m \in \mathbb{N}$. We proceed by induction on m . Proposition 2.1.1 shows that a polynomial of odd degree in $\mathbb{R}[x]$ has a root in \mathbb{C} , so the base case holds.

Suppose that $m > 0$. Regarding f as a polynomial in $\mathbb{C}[x]$, there exists a field extension $\mathbb{C} \subseteq L$ such that f splits completely over L . Let $\alpha_1, \alpha_2, \dots, \alpha_n \in L$ denote the roots of f . For all $\lambda \in \mathbb{R}$, consider

$$g_\lambda(x) := \prod_{1 \leq j < k \leq n} (x - (\alpha_j + \alpha_k) + \lambda \alpha_j \alpha_k).$$

which has degree $\binom{n}{2} = \frac{1}{2}n(n-1)$. We first claim that $g \in \mathbb{R}[x]$. By construction, g_λ is invariant under any transposition of the roots, so its coefficients are symmetric polynomials in the roots. Since $\lambda \in \mathbb{R}$, Corollary 1.1.5 establishes that $g_\lambda \in \mathbb{R}[x]$.

Since $n = 2^m k$, the degree of g_λ is

$$\frac{1}{2}n(n-1) = \frac{1}{2}(2^m k)(2^m k - 1) = 2^{m-1}k(2^m k - 1).$$

Since k is odd and $m > 0$, the integer $k(2^m k - 1)$ is also odd. Even though g_λ has larger degree than f , the exponent of 2 has been reduced by one. It follows that, for all $\lambda \in \mathbb{R}$, the induction hypothesis ensures that g_λ has a root in \mathbb{C} . By construction, the roots of g_λ are $\alpha_j + \alpha_k - \lambda \alpha_j \alpha_k$. In other words, for all $\lambda \in \mathbb{R}$, we can find a pair (j, k) such that $1 \leq j < k \leq n$ and $\alpha_j + \alpha_k - \lambda \alpha_j \alpha_k \in \mathbb{C}$. Although the pair (j, k) might depend on λ , as we range over the infinitely many possibilities of λ , there are only finitely many possibilities for the corresponding pair (j, k) . Hence, there must exist $\lambda \neq \mu$ in \mathbb{R} that use the same pair (j, k) , so $\alpha_j + \alpha_k - \lambda \alpha_j \alpha_k \in \mathbb{C}$ and $\alpha_j + \alpha_k - \mu \alpha_j \alpha_k \in \mathbb{C}$. Subtraction gives

$$(\alpha_j + \alpha_k - \lambda \alpha_j \alpha_k) - (\alpha_j + \alpha_k - \mu \alpha_j \alpha_k) = (\mu - \lambda) \alpha_j \alpha_k \in \mathbb{C},$$

which implies that $\alpha_j \alpha_k \in \mathbb{C}$. The equation $\alpha_j + \alpha_k - \lambda \alpha_j \alpha_k \in \mathbb{C}$ thereby implies that $\alpha_j + \alpha_k \in \mathbb{C}$.

Finally, consider the quadratic polynomial

$$(x - \alpha_j)(x - \alpha_k) = x^2 - (\alpha_j + \alpha_k)x + \alpha_j \alpha_k \in \mathbb{C}[x].$$

Lemma 2.1.2 shows that the roots of this quadratic polynomial lie in \mathbb{C} . However, the roots are clearly α_j and α_k . Therefore, f has a complex root. \square

The Intermediate Value Theorem depends on the completeness of the real numbers, so one could argue that the Fundamental Theorem of Algebra is really a theorem in analysis or topology.

This strategy appears in L. Euler, *Recherches sur les racines imaginaires des équations*, Mém. Acad. Roy. Sci. Berlin, 5 (1749) 222–288.

2.2 Minimal Polynomials

How are elements in a field extension related to a subfield? There is a basic dichotomy.

2.2.0 Definition. Let L be a field extension of a field K . An element $\alpha \in L$ is *algebraic* over K if there exists a nonconstant polynomial $f \in K[x]$ such that $f(\alpha) = 0$. Otherwise the element $\alpha \in L$ is *transcendental* over K .

2.2.1 Problem. Show that $\sqrt{2} + \sqrt{3}$ is algebraic over \mathbb{Q} .

Solution. Consider the polynomial

$$\begin{aligned} (x - \sqrt{2} - \sqrt{3})(x - \sqrt{2} + \sqrt{3})(x + \sqrt{2} - \sqrt{3})(x + \sqrt{2} + \sqrt{3}) \\ = (x^2 - 2\sqrt{2}x - 1)(x^2 + 2\sqrt{2}x - 1) \\ = x^4 - 10x^2 + 1. \end{aligned}$$

Since $\sqrt{2} + \sqrt{3}$ is a root of a nonconstant polynomial in $\mathbb{Q}[x]$, it is algebraic over \mathbb{Q} . \square

2.2.2 Lemma/Definition. When $\alpha \in L$ is algebraic over K , there exists a unique nonconstant monic polynomial $p \in K[x]$ such that

(root) The element α is a root of p .

(minimal) For all $f \in K[x]$ having α as a root, p divides f .

The polynomial p is called the *minimal polynomial* of α over K .

Proof. Among all nonconstant polynomials in $K[x]$ having α as a root, there is one of smallest degree, say p . Rescaling if necessary, we may assume that p is monic.

Suppose that $f \in K[x]$ with $f(\alpha) = 0$. Division with remainder produces $q, r \in K[x]$ such that $f = qp + r$ and either $r = 0$ or $\deg(r) < \deg(p)$. Evaluating at α gives

$$0 = f(\alpha) = q(\alpha)p(\alpha) + r(\alpha) = r(\alpha).$$

If r were nonzero, then it would be a polynomial of degree less than p having α as a root, which would contradict the choice of p . We conclude that $r = 0$ and p divides f . \square

We are using the well-ordering of the set \mathbb{N} . The hypothesis that $\alpha \in L$ is algebraic means that there is a nonconstant polynomial in $K[x]$ having α as a root.

2.2.3 Proposition. Let $\alpha \in L$ be an algebraic element over K with minimal polynomial $p \in K[x]$. For every nonconstant monic polynomial $f \in K[x]$, the following are equivalent:

- a. $f = p$,
- b. f is a polynomial of minimal degree such that $f(\alpha) = 0$,
- c. f is irreducible over K and $f(\alpha) = 0$.

Proof.

a \Leftrightarrow b: This follows from the proof of Lemma 2.2.2.

b \Leftrightarrow c: We claim that the minimal polynomial f is irreducible over K . Suppose that $f = gh$ where $g, h \in K[x]$ have smaller degree than p . It would follow that $0 = f(\alpha) = g(\alpha)h(\alpha)$ which would imply that $g(\alpha) = 0$ or $h(\alpha) = 0$. Since this would contradict b, the polynomial f must be irreducible.

c \Leftrightarrow b: Suppose that $f(\alpha) = 0$ and f is irreducible. Lemma 2.2.2 shows that p divides f , so $f = ph$ for some $h \in K[x]$. Since f is irreducible and p is nonconstant, h must be a constant. Thus, we deduce that $f = p$ because both f and p are monic. \square

2.2.4 Remark. The irrationality of $\sqrt{2}$ implies that $x^2 - 2 \in \mathbb{Q}[x]$ is the minimal polynomial of $\sqrt{2}$ over \mathbb{Q} .

2.2.5 Problem. Demonstrate that $x^4 - 10x^2 + 1$ is the the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} .

Solution. By Problem 2.2.1 and Proposition 2.2.3, it suffices to show that $f := x^4 - 10x^2 + 1$ is irreducible over \mathbb{Q} . By the Gauss Lemma, this is equivalent to proving that f is irreducible over \mathbb{Z} . Reducing modulo 3, the polynomial f becomes $x^4 + 2x^2 + 1 \equiv (x^2 + 1)^2 \in \mathbb{F}_3[x]$. Observe that $x^2 + 1$ is irreducible over \mathbb{F}_3 , because

$$0^2 + 1 \equiv 1 \pmod{3}, \quad 1^2 + 1 \equiv 2 \pmod{3}, \quad 2^2 + 1 \equiv 5 \equiv 2 \pmod{3}.$$

The image of f in $\mathbb{F}_3[x]$ is the square of an irreducible polynomial, so any quadratic factor must be an associate of $x^2 + 1$. Lifting such a factorization back to $\mathbb{Z}[x]$ would force f to be the square of a quadratic polynomial of \mathbb{Q} . Comparing coefficients, the equation

$$x^4 - 10x^2 + 1 = (x^2 + ax + b)^2 = x^4 + 2ax^3 + (a^2 + 2b)x^2 + 2abx + b^2,$$

gives $2a = 0$, $a^2 + 2b = -10$, $2ab = 0$, and $b^2 = 1$, so $a = 0$, $b = -5$, and $5^2 = 1$ which is absurd. We see that f is irreducible over \mathbb{Q} , and $x^4 - 10x^2 + 1$ is the the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} . \square

2.2.6 Notation. Let $K \subseteq L$ be a field extension. For all field elements $\alpha_1, \alpha_2, \dots, \alpha_n \in L$, we define

$$K[\alpha_1, \alpha_2, \dots, \alpha_n] := \{h(\alpha_1, \alpha_2, \dots, \alpha_n) \mid h \in K[x_1, x_2, \dots, x_n]\}.$$

2.2.7 Lemma. Let $K \subset L$ be a field extension. For every $\alpha \in L$ that is algebraic over K with minimal polynomial $p \in K[x]$, there exists a unique K -algebra isomorphism $K[x]/\langle p \rangle \cong K[\alpha]$ that sends the coset $x + \langle p \rangle$ to α .

Proof. Consider the evaluation map $\varphi: K[x] \rightarrow L$ that sends x to α . By construction, the image of φ is $K[\alpha]$.

We claim that $\text{Ker}(\varphi) = \langle p \rangle$. For all $g \in K[x]$, we have

$$\varphi(gp) = \varphi(g)\varphi(p) = g(\alpha)p(\alpha) = g(\alpha)0 = 0,$$

so $\langle p \rangle \subseteq \text{Ker}(\varphi)$. Conversely, suppose that $f \in \text{Ker}(\varphi)$. It follows that $f(\alpha) = 0$, so Lemma 2.2.2 implies that f is a multiple of p . We deduce that $\text{Ker}(\varphi) \subseteq \langle p \rangle$, so $\text{Ker}(\varphi) = \langle p \rangle$.

Given the image and kernel of φ , the First Isomorphism Theorem shows that the K -algebra homomorphism $\varphi: K[x] \rightarrow L[\alpha]$ induces an the K -algebra isomorphism

$$\tilde{\varphi}: \frac{K[x]}{\langle p \rangle} \rightarrow K[\alpha]$$

where $\tilde{\varphi}(x) = \varphi(x) = \alpha$. \square