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The structure of certain types of field extensions form a key part of
Galois theory. We develop the relevant mathematical language.

3.0 Adjoining elements
How can we describe subrings and subfields of a field extension?

Although we overload the
mathematical meaning of parentheses
and brackets, this does not seem to
cause any significant confusion.

3.0.0Notation. Ⅼet𝐾 ⊆ 𝐿be a field extension. For all field elements𝛼1, 𝛼2,… ,𝛼𝑛 ∈ 𝐿, we define𝐾[𝛼1, 𝛼2,… ,𝛼𝑛]∶= {ℎ(𝛼1, 𝛼2,… ,𝛼𝑛) || ℎ ∈ 𝐾[𝑥1, 𝑥2,… ,𝑥𝑛]} ,𝐾(𝛼1, 𝛼2,… ,𝛼𝑛)∶= {𝛼𝛽 || 𝛼, 𝛽 ∈ 𝐾[𝛼1, 𝛼2,… ,𝛼𝑛] with 𝛽 ≠ 0}= {ℎ(𝛼1, 𝛼2,… ,𝛼𝑛) || ℎ ∈ 𝐾(𝑥1, 𝑥2,… ,𝑥𝑛)} .
3.0.1 Ⅼemma. The set𝐾(𝛼1, 𝛼2,… ,𝛼𝑛) is the smallest subfield of 𝐿 that
contains𝐾 and the elements 𝛼1, 𝛼2,… ,𝛼𝑛 ∈ 𝐿.
Proof. By construction, the set 𝐾(𝛼1, 𝛼2,… ,𝛼𝑛) is the image of the
evaluation map from 𝐾(𝑥1, 𝑥2,… ,𝑥𝑛) to 𝐿 sending 𝑥𝑗 to 𝛼𝑗 for all1 ⩽ 𝑗 ⩽ 𝑛. Ɪt follows that𝐾(𝛼1, 𝛼2,… ,𝛼𝑛) is a subfield of 𝐿 because
the image of a unit is also a unit; see ⅯATH 210.
Suppose that the subfield𝐾′ ⊆ 𝐿 contains the underlying field𝐾

and the elements 𝛼1, 𝛼2,… ,𝛼𝑛 ∈ 𝐿. Since 𝐾′ is closed under both
addition and multiplication, we have 𝑓(𝛼1, 𝛼2,… ,𝛼𝑛) ∈ 𝐾′ for all𝑓 ∈ 𝐾[𝑥1, 𝑥2,… ,𝑥𝑛]. Ɪn other words, there exists a ring extension𝐾[𝛼1, 𝛼2,… ,𝛼𝑛] ⊂ 𝐾′. The universal property for fraction fields
establishes that 𝐾(𝛼1, 𝛼2,… ,𝛼𝑛) ⊂ 𝐾′.

The canonical injection 𝜂 from𝐾[𝑥1, 𝑥2,… ,𝑥𝑛] to 𝐾(𝑥1, 𝑥2,… ,𝑥𝑛)
sends 𝑥𝑗 to 𝑥𝑗/1. The universal
property of fraction fields asserts that,
for any ring homomorphism𝜓∶𝐾[𝑥1, 𝑥2,… ,𝑥𝑛]→𝐿 such the
image of any nonzero element is a
unit, there exists a unique ring
homomorphism 𝜓 from𝐾(𝑥1, 𝑥2,… ,𝑥𝑛) to 𝐿 such that𝜓 = 𝜓 ∘ 𝜂.

3.0.2 Remark. Since 𝐾(𝛼1, 𝛼2,… ,𝛼𝑛) is a subfield of 𝐿 containing𝐾, we have a chain𝐾 ⊂ 𝐾(𝛼1, 𝛼2,… ,𝛼𝑛) ⊆ 𝐿 of field extensions. We
say that the field 𝐾(𝛼1, 𝛼2,… ,𝛼𝑛) is obtained from 𝐾 by adjoining
the elements 𝛼1, 𝛼2,… ,𝛼𝑛 ∈ 𝐿.
3.0.3 Problem. Show that 𝑥4 − 2 ∈ ℚ[𝑥] splits completely over the
field 𝐿∶= ℚ( 4√2,− 4√2, i 4√2,−i 4√2) and that 𝐿 = ℚ(i, 4√2).
Solution. Overℂ, we have𝑥4 − 2 = (𝑥2 − √2)(𝑥2 + √2)= (𝑥 − 4√2)(𝑥 + 4√2)(𝑥 − i 4√2)(𝑥 + i 4√2) .
Ɪt follows that 𝐿∶= ℚ( 4√2,− 4√2, i 4√2,−i 4√2) is the smallest field over
which 𝑥4 − 2 splits completely.
We have 𝐿 ⊆ 𝐾 ∶= ℚ(i, 4√2) because the field 𝐾 contains ℚ, and

the elements ± 4√2 and ±i 4√2. Since 𝐿 contains bothℚ and 4√2, and
i = i 4√24√2 ∈ 𝐿 ,

we conclude that 𝐾 ⊆ 𝐿 and 𝐿 = 𝐾.
3.0.4 Ⅽorollary. For every field extension 𝐾 ⊆ 𝐿 and all field elements𝛼1, 𝛼2,… ,𝛼𝑛 ∈ 𝐿, we have𝐾(𝛼1, 𝛼2,… ,𝛼𝑛) = (𝐾(𝛼1, 𝛼2,… ,𝛼𝑟))(𝛼𝑟+1, 𝛼𝑟+2,… ,𝛼𝑛)
for all 1 ⩽ 𝑟 < 𝑛.

This corollary implies thatℚ⊂ℚ(√2)⊂(ℚ(√2))(√3)=ℚ(√2,√3) .
This incremental perspective can be
very useful.
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Proof. The field on the right is constructed by first adjoining the el‑
ements𝛼1, 𝛼2,… ,𝛼𝑟 ∈ 𝐿 to𝐾 to produce𝐾(𝛼1, 𝛼2,… ,𝛼𝑟) and then
adjoining 𝛼𝑟+1, 𝛼𝑟+2,… ,𝛼𝑛 ∈ 𝐿 to the field 𝐾(𝛼1, 𝛼2,… ,𝛼𝑟). Since
this field contains 𝐾 and the elements 𝛼1, 𝛼2,… ,𝛼𝑛, Ⅼemma 3.0.1
gives𝐾(𝛼1, 𝛼2,… ,𝛼𝑛) ⊆ (𝐾(𝛼1, 𝛼2,… ,𝛼𝑟))(𝛼𝑟+1, 𝛼𝑟+2,… ,𝛼𝑛). Ⅽon‑
versely, the field 𝐾(𝛼1, 𝛼2,… ,𝛼𝑛) contains the underlying field 𝐾
and the elements 𝛼1, 𝛼2,… ,𝛼𝑟 ∈ 𝐿, so Ⅼemma 3.0.1 shows that𝐾(𝛼1, 𝛼2,… ,𝛼𝑟) ⊆ 𝐾(𝛼1, 𝛼2,… ,𝛼𝑛) .
Since the field 𝐾(𝛼1, 𝛼2,… ,𝛼𝑛) contains 𝐾(𝛼1, 𝛼2,… ,𝛼𝑟) and the
elements 𝛼𝑟+1, 𝛼𝑟+2,… ,𝛼𝑛 ∈ 𝐿, Ⅼemma 3.0.1 also shows that(𝐾(𝛼1, 𝛼2,… ,𝛼𝑟))(𝛼𝑟+1, 𝛼𝑟+2,… ,𝛼𝑛) ⊆ 𝐾(𝛼1, 𝛼2,… ,𝛼𝑛) .
3.0.5 Proposition. Ⅼet 𝐾 ⊆ 𝐿 be a field extension. For all 𝛼 ∈ 𝐿, the
element 𝛼 is algebraic over𝐾 if and only if𝐾[𝛼] = 𝐾(𝛼).
Proof. When𝛼 ∈ 𝐿 is algebraic over𝐾, Ⅼemma 2.2.7 establishes that𝐾[𝛼] ≅ 𝐾[𝑥] / ⟨𝑝⟩ where 𝑝 ∈ 𝐾[𝑥] is the minimal polynomial of 𝛼.
Knowing that minimal polynomials are irreducible, it follows that𝐾[𝛼] is a field. Since𝐾(𝛼) is the smallest subfield of 𝐿 containing𝐾
and 𝛼, we deduce that𝐾(𝛼) = 𝐾[𝛼]. The opposite inclusion always
holds, so 𝐾(𝛼) = 𝐾[𝛼] with 𝛼 ∈ 𝐿 is algebraic over 𝐾.
For the other implication, suppose that 𝐾[𝛼] = 𝐾(𝛼). We may

assume that 𝛼 ≠ 0 because 0 is obviously algebraic over 𝐾. The
membership 1/𝛼 ∈ 𝐾(𝛼) = 𝐾[𝛼] implies that1𝛼 = 𝑎0 + 𝑎1𝛼 +⋯+ 𝑎𝑚𝛼𝑚 ,
for some 𝑎0, 𝑎1,… ,𝑎𝑚 ∈ 𝐾. Hence, we obtain0 = −1 + 𝑎0𝛼 + 𝑎1𝛼2 +⋯+ 𝑎𝑚𝛼𝑚+1 ,
proving that 𝛼 is algebraic over 𝐾.
3.0.6 Ⅽorollary. Ⅼet 𝐾 ⊆ 𝐿 be an extension. When 𝛼1, 𝛼2,… ,𝛼𝑛 ∈ 𝐿
are algebraic over𝐾, we have𝐾[𝛼1, 𝛼2,… ,𝛼𝑛] = 𝐾(𝛼1, 𝛼2,… ,𝛼𝑛).
Proof. Ɪt suffices to prove that the subring𝐾[𝛼1, 𝛼2,… ,𝛼𝑛] is a field.
We proceed by induction on 𝑛. The base case 𝑛 = 1 is precisely
Proposition 3.0.5. Suppose that 𝑛 > 1. The induction hypothesis
asserts that 𝐾[𝛼1, 𝛼2,… ,𝛼𝑛−1] = 𝐾(𝛼1, 𝛼2,… ,𝛼𝑛−1). Since 𝛼𝑛 ∈ 𝐿
is algebraic over 𝐾, there exists a nonconstant 𝑓 ∈ 𝐾[𝑥] such that𝑓(𝛼𝑛) = 0. Regarding𝑓 as having coefficients in𝐾(𝛼1, 𝛼2,… ,𝛼𝑛−1),
we see that𝛼𝑛 is algebraic over𝐾(𝛼1, 𝛼2,… ,𝛼𝑛−1). Proposition 3.0.5
gives 𝐾(𝛼1, 𝛼2,… ,𝛼𝑛−1)[𝛼𝑛] = (𝐾(𝛼1, 𝛼2,… ,𝛼𝑛−1))(𝛼𝑛) and Ⅽorol‑
lary 3.0.4 gives (𝐾(𝛼1, 𝛼2,… ,𝛼𝑛−1))(𝛼𝑛) = 𝐾(𝛼1, 𝛼2,… ,𝛼𝑛).
3.0.7 Remark. Since ℚ[√2,√3] = ℚ(√2,√3), every element in the
fieldℚ(√2,√3) is a polynomial in√2,√3with coefficients inℚ. The
equations√22𝑘 = 2𝑘 , √22𝑘+1 = 2𝑘√2 , √32𝑘 = 3𝑘 , √32𝑘+1 = 3𝑘√3 ,
imply thatℚ(√2,√3) = {𝑎 + 𝑏√2 + 𝑐√3 + 𝑑√6 || 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℚ}.
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3.1 Ɪrreducible Polynomials
How can we determine if a given polynomial is irreducible? Since
minimal polynomials are always irreducible, irreducibility plays a
prominent role in field theory.
To get an idea of how factoring is done, we describe an algorithm

for deciding whether 𝑓 ∈ ℤ[𝑥] is irreducible overℚ.
3.1.0 Ⅽorollary. For any reducible 𝑓 ∈ ℤ[𝑥] having positive degree,
there exists 𝑔, ℎ ∈ ℤ[𝑥] such that 𝑓 = 𝑔ℎ where deg(𝑔) < deg(𝑓) and
deg(ℎ) < deg(𝑓).
Ⅽomment on proof. See ⅯATH 210.

To determine the irreducibility of a given polynomial 𝑓 ∈ ℤ[𝑥],
set 𝑛∶= deg(𝑓) > 0. Observe that, if𝑓(𝑗) = 0 for some 0 ⩽ 𝑗 ⩽ 𝑛−1,
then 𝑥−𝑗 is a factor of 𝑓 and we know that 𝑓 is reducible. Thus, we
may assume that 𝑓(0), 𝑓(1),… ,𝑓(𝑛 − 1) are nonzero. Ⅽreate a set
of polynomials as follows:
Fix an integer 0 < 𝑑 < 𝑛.
Fix divisors 𝑎0, 𝑎1,… ,𝑎𝑑 ∈ ℤ of 𝑓(0), 𝑓(1),… ,𝑓(𝑑) ∈ ℤ.
Use the Ⅼagrange interpolation formula to construct 𝑔 ∈ ℚ[𝑥]
such that deg(𝑔) ⩽ 𝑑 and 𝑔(𝑗) = 𝑎𝑗 for all 0 ⩽ 𝑗 ⩽ 𝑑.

Accept 𝑔 if deg(𝑔) = 𝑑 and 𝑔 ∈ ℤ[𝑥]; otherwise reject it.
Ⅾoing this for all 0 < 𝑑 < 𝑛 and all divisors of 𝑓(0), 𝑓(1),… ,𝑓(𝑑)
defines a set of polynomials 𝑔 ∈ ℤ[𝑥].
3.1.1 Proposition. This set of polynomials 𝑔 ∈ ℤ[𝑥] is finite. Ⅿoreover,
the polynomial 𝑓 is irreducible overℚ if and only if it is not divisible by
any of the polynomials in this set.

Proof. Since we may assume that 𝑓(0), 𝑓(1),… ,𝑓(𝑑) are nonzero,
each 𝑓(𝑗) has only finitely many divisors. Hence, there are only
finitely many choices for 𝑎0, 𝑎1,… ,𝑎𝑑 ∈ ℤ. Since 𝑔 is uniquely de‑
termined by the 𝑎𝑗 , there are only finitely many such 𝑔’s.
We claim that 𝑓 is reducible if and only if it is divisible by one

of theses polynomials. One direction is obvious. For the other di‑
rection, suppose that 𝑓 is reducible. By Ⅽorollary 3.1.0, there exists𝑔, ℎ ∈ ℤ[𝑥] such that 𝑓 = 𝑔ℎ and deg(𝑔) = 𝑑 where 0 < 𝑑 < 𝑛.
Set 𝑎𝑖 ∶= 𝑔(𝑖) for 0 ⩽ 𝑗 ⩽ 𝑑. Observe that 𝑎𝑗 divides 𝑓(𝑗) because𝑓(𝑗) = 𝑔(𝑗) ℎ(𝑗). The Ⅼagrange interpolation formula produces𝑔 ∈ ℚ[𝑥] of degree at most 𝑑 such that 𝑔(𝑗) = 𝑎𝑗 for all 0 ⩽ 𝑖 ⩽ 𝑑.
Since 𝑔−𝑔 has degree atmost 𝑑 and vanishes at 𝑑+1 points, it must
by the zero polynomial. Hence, 𝑔 = 𝑔 is on our list.

From a computational point of view,
this algorithm is dreadful. The first
polynomial time algorithm for
factoring rational polynomials
appears in A.K. Ⅼenstra, H.W. Ⅼenstra,
Ⅼ. Ⅼovász, Ⅼászló, Factoring polynomials
with rational coefficients, Ⅿath. Ann.,
261 (1982) 515–534.

3.1.2 Eisenstein Ⅽriterion. Ⅼet 𝑛 be a positive integer and consider the
polynomial 𝑓 = 𝑎0𝑥𝑛 +𝑎1𝑥𝑛−1 +⋯𝑎𝑛 ∈ ℤ[𝑥]. Whenever there exists a
prime 𝑝 ∈ ℤ such that 𝑝 does not divide 𝑎0, 𝑝 divides 𝑎1, 𝑎2,… ,𝑎𝑛, and𝑝2 does not divide 𝑎𝑛, the polynomial 𝑓 is irreducible overℚ.

Theodor Schönemann first published
a version of this criterion in 1846.
Gotthold Eisenstein published a
somewhat different version in the
same journal in 1850.

Ⅽomment on proof. See ⅯATH 210.
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3.1.3 Problem. For all integers 𝑛 ⩾ 2 and any prime 𝑝, prove that𝑥𝑛 + 𝑝𝑥 + 𝑝 is irreducible overℚ.
Solution. For the prime 𝑝, the Eisenstein criterion implies that 𝑓 is
irreducible overℚ.
3.1.4 Problem. For every prime integer 𝑝, prove that𝑓∶= 𝑥𝑝−1 + 𝑥𝑝−2 +⋯+ 𝑥 + 1
is irreducible inℚ[𝑥].
Solution. Since (𝑥 − 1)𝑓(𝑥) = 𝑥𝑝 − 1, the ring isomorphism given
by 𝑥 ↦ 𝑦 + 1 yields𝑦𝑓(𝑦 + 1) = (𝑦 + 1)𝑝 − 1 = 𝑦𝑝 + (𝑝1 ) 𝑦𝑝−1 + (𝑝2 ) 𝑦𝑝−2 +⋯+ ( 𝑝𝑝−1) 𝑦 .
We have (𝑝𝑖 ) = 𝑝(𝑝−1)⋯(𝑝−𝑖+1)𝑖! . When 𝑖 < 𝑝, the prime integer 𝑝 is not
a factor of 𝑖!, so 𝑖! divides the product (𝑝 − 1)(𝑝 − 2)⋯(𝑝 − 𝑖 + 1)
which implies that (𝑝𝑖 ) is divisible by 𝑝. Ⅾividing the expansion of𝑦 𝑓(𝑦 + 1) by 𝑦 shows that 𝑓(𝑦 + 1) satisfies the hypothesis of the
Eisenstein criterion. Therefore, the polynomial𝑦𝑝−1 + (𝑝1 ) 𝑦𝑝−2 + (𝑝2 ) 𝑦𝑝−3 +⋯+ ( 𝑝𝑝−1)
is irreducible. We conclude that 𝑓 is irreducible.
3.1.5 Proposition. Ⅼet 𝐾 be a field. For every prime integer 𝑝 ∈ ℤ, the
polynomial 𝑓 = 𝑥𝑝 − 𝑎 ∈ 𝐾[𝑥] is irreducible over 𝐾 if and only if 𝑓 has
no roots in𝐾.
Proof. Suppose that 𝑓 has a root 𝛼 ∈ 𝐾. Ɪt follows that 𝑥−𝛼 ∈ 𝐾[𝑥]
is a factor, so 𝑓 is reducible.
Suppose that𝑓 is reducible. By Theorem 2.0.6, there exists a field

extension 𝐾 ⊆ 𝐿 over which 𝑓 splits completely:𝑓 = (𝑥 − 𝛼1)(𝑥 − 𝛼2)⋯(𝑥 − 𝛼𝑝)
for some 𝛼1, 𝛼2,… ,𝛼𝑝 ∈ 𝐿. Ɪf 𝛼1 = 0, then 𝑓 has a root in 𝐾, so we
may assume that 𝛼1 ≠ 0. For all 1 ⩽ 𝑗 ⩽ 𝑝, set 𝜁𝑗 = 𝛼𝑗/𝛼1. Since𝛼𝑝𝑗 = 𝑎, we see that 𝜁𝑝𝑗 = 𝛼𝑝𝑗𝛼𝑝1 = 𝑎𝑎 = 1 .
Ɪt follows that 𝛼𝑗 = 𝜁𝑗𝛼1 where 𝜁𝑗 is a 𝑝th root of unity. Hence, we
obtain 𝑓 = (𝑥 − 𝜁1𝛼1)(𝑥 − 𝜁2𝛼1)⋯(𝑥 − 𝜁𝑝𝛼1).
Now, suppose that 𝑓 = 𝑔ℎ where 𝑔, ℎ ∈ 𝐾[𝑥], 𝑟 ∶= deg(𝑔) < 𝑝,

and 𝑠 ∶= deg(ℎ) < 𝑝. We may assume that both 𝑔 and ℎ are monic.
Since𝐾[𝑥] is a unique factorization domain, the polynomial 𝑔must
be a product of 𝑟 of the linear factors. After relabeling if necessary,
we may assume that 𝑔 = (𝑥 − 𝜁1𝛼1)(𝑥 − 𝜁2𝛼1)⋯(𝑥 − 𝜁𝑟𝛼1). Since
the constant term of 𝑔 lies in 𝐾, this implies that 𝜁𝛼𝑟1 ∈ 𝐾 where𝜁 = 𝜁1𝜁2⋯𝜁𝑟. Notice that 𝜁𝑝 = 1. Since 0 < 𝑟 < 𝑝 and 𝑝 is prime,
there exists 𝑘, ℓ ∈ ℤ such that 𝑘𝑟 + 𝑒𝑙𝑙𝑝 = 1. Ɪt follows that𝜁𝑘𝛼1 = 𝜁𝑘𝛼𝑘𝑟+ℓ𝑝1 = (𝜁𝛼𝑟1)𝑘(𝛼𝑝1)ℓ ∈ 𝐾 .
Hence, we see that (𝜁𝑘𝛼1)𝑝 = (𝜁𝑝)𝑘𝛼𝑝1 = 𝑎 which shows that 𝜁𝑘𝛼1 is
a root of 𝑓 = 𝑥𝑝 − 𝑎 lying in 𝐾.

Ⅼet 𝐾 be a subfield ofℝ and let 𝑝 be
an odd prime. For all 𝑎 ∈ 𝐾, define𝑝√𝑎 to be the real 𝑝th root of 𝑎. Since 𝑝
is odd,

𝑝√𝑎 is the only real 𝑝th root of𝑎. Proposition 3.1.5 establishes that𝑥𝑝 − 𝑎 is irreducible over 𝐾 if and only
if

𝑝√𝑎 ∉ 𝐾.
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