3 Field Extensions

The structure of certain types of field extensions form a key part of
Galois theory. We develop the relevant mathematical language.

3.0 Adjoining elements

How can we describe subrings and subfields of a field extension?

3.0.0 Notation. Let K C Lbe afield extension. For all field elements

oy, Ay, ..., A, € L, we define

o] = {h(ay, o, ..., a,) | h € K[x1, X5, ..., X1},

K(ay, ay,...,0,) = {% | a,B € Kl[ay,a, ..., a,] with § # 0}
={h(ay, ay,...,0,) | h € K(x1, X5, ..., X,)}.

Kloy, as, ...

3.0.1Lemma. ThesetK(ay, oy, ..., a,) is the smallest subfield of L that
contains K and the elements a,, &5, ..., &, € L.

Proof. By construction, the set K(ay, o, ..., @,) is the image of the
evaluation map from K(x;, x5, ..., X,) to L sending x; to «; for all
1 £ j < n. It follows that K(a;, ay, ..., a,) is a subfield of L because
the image of a unit is also a unit; see MATH 210.

Suppose that the subfield K’ C L contains the underlying field K
and the elements o, &, ..., a, € L. Since K’ is closed under both
addition and multiplication, we have f(a;,a;,...,a,) € K’ for all
f € K[x,x,, ...,
Kl[ey, oy, ...,a,] € K'. The universal property for fraction fields
establishes that K (a4, oy, ..., ,) CK'. O

x,]. In other words, there exists a ring extension

3.0.2 Remark. Since K(a;, a5, ...,a,) is a subfield of L containing
K,wehaveachainK C K(a;,a5,...,a,) C Loffield extensions. We
say that the field K(ay, a5, ..., &) is obtained from K by adjoining
the elements a;, a5, ..., a, € L.

3.0.3 Problem. Show that x* — 2 € Q[x] splits completely over the
field L := Q(V/2, —V/2,i%/2, —i/2) and that L = Q(i, V2).
Solution. Over C, we have
xt—2=(x?- \/5)(x2 + \/E)
= (x = V2)(x + V2)(x —iV2)(x +iV2).

It follows that L := Q((‘/_ ,—/2,iV2, —i%) is the smallest field over
which x* — 2 splits completely.

We have L C K := Q(i, (‘/5) because the field K contains Q, and
the elements i% and ii(‘/i. Since L contains both Q and %, and

4
Vep,

!

V2

we conclude that K € L and L = K. O

3.0.4 Corollary. For every field extension K C L and all field elements
0y, Ay ..., &, € L, we have

K(ay,ay,...,a,) = (K(ay, oy, ...
foralll<r<n.

4 ar))(ar+1, ar+2, ooy C{n)
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Although we overload the
mathematical meaning of parentheses
and brackets, this does not seem to
cause any significant confusion.

The canonical injection 7 from
K[x1,X3, ..., xp] to K(X1, X2, ..., Xp)
sends x; to xj/1. The universal
property of fraction fields asserts that,
for any ring homomorphism

Y: K[x1,%3,...,X,] = L such the
image of any nonzero element is a
unit, there exists a unique ring
homomorphism z,/b\ from
K(x1,X3,...,Xp) to L such that

Pp=yon.

This corollary implies that
QcQ(2)c(Q(W2)(V3)=Q(W2,V3).

This incremental perspective can be
very useful.



Proof. The field on the right is constructed by first adjoining the el-
ements ;, &y, ..., &, € Lto K to produce K(a;, a5, ..., a,) and then
adjoining o1, %42, ..., &, € L to the field K(ay, o, ..., a,). Since
this field contains K and the elements «;, &, ..., &,, Lemma 3.0.1
gives K(ay, oy, ..., &t,) C (K(0ty, Ay ovv s @) N (@py1s Xpgs v, &y). Con-
versely, the field K(ay, a5, ..., a,) contains the underlying field K
and the elements o, a5, ... , &, € L, so Lemma 3.0.1 shows that

K(oty, a5, ...,a,) CK(oty, a5, ...,a,).

Since the field K(«;, a3, ..., a,) contains K(a;, @y, ..., ®,) and the
elements &, .1, %45, ..., &, € L, Lemma 3.0.1 also shows that

(K(ay, s oo s @) Qs Apgas ooe 5 Ay) S K(0y, 05,0y ) . O

3.0.5 Proposition. Let K C L be a field extension. For alla € L, the
element o is algebraic over K if and only ifK[a] = K(«@).

Proof. When « € Lis algebraic over K, Lemma 2.2.7 establishes that
K[a] = K[x] /(p) where p € K[x] is the minimal polynomial of .
Knowing that minimal polynomials are irreducible, it follows that
K[ca]is afield. Since K(¢) is the smallest subfield of L containing K
and a, we deduce that K(a) = K[«]. The opposite inclusion always
holds, so K(a) = K[«] with a € L is algebraic over K.

For the other implication, suppose that K[«] = K(a). We may
assume that o # 0 because 0 is obviously algebraic over K. The
membership 1/a € K(a) = K[a] implies that

1 m
a =a0+a10£+---+am06 5
for some ay,q,, ...,qa, € K. Hence, we obtain
0=-1+agt +a;a®+ - + a,am+t,

proving that « is algebraic over K. O

3.0.6 Corollary. Let K C L be an extension. When a;, a5, ..., 0, € L
are algebraic over K, we have K[y, a5, ..., &, = K(aq, 0y, ..., Q).

Proof. Itsuffices to prove that the subring K[«;, 5, ... , &, ] is a field.
We proceed by induction on n. The base case n = 1 is precisely
Proposition 3.0.5. Suppose that n > 1. The induction hypothesis
asserts that K[«;, oy, ..., a,1] = K(ay, 5, ... ,¢t,_1). Since o, € L
is algebraic over K, there exists a nonconstant f € K[x] such that
f(a,) = 0. Regarding f as having coefficients in K(a;, &5, ..., Xp_1),

we see that a, is algebraic over K (a;, &y, ... , &,_;). Proposition 3.0.5
gives K(ay, o, ..., ap_1)a,] = (K(ety, ay, ..., a,-1))(a,) and Corol-
lary 3.0.4 gives (K(ay, a3, ..., oy 1))(ay) = K(ay, ay, ..., ). O

3.0.7 Remark. Since Q[v/2,1/3] = Q(v/2,4/3), every element in the
field Q(v/2,1/3) is a polynomial in /2, /3 with coefficients in Q. The

equations
2k 2k+1

V22, V2 =22, VB =3, VB =3,
imply that Q(v2,/3) = {a + bV2 + ¢\/3 + d\/6 | a,b,c,d € Q}.

2k+1
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3.1 Irreducible Polynomials

How can we determine if a given polynomial is irreducible? Since
minimal polynomials are always irreducible, irreducibility plays a
prominent role in field theory.

To get an idea of how factoring is done, we describe an algorithm
for deciding whether f € Z[x] is irreducible over Q.

3.1.0 Corollary. For any reducible f € Z[x] having positive degree,
there exists g, h € Z[x] such that f = gh where deg(g) < deg(f) and
deg(h) < deg(f).

Comment on proof. See MATH 210. O

To determine the irreducibility of a given polynomial f € Z[x],
setn := deg(f) > 0. Observe that, if f(j) = 0forsome0 < j < n—1,
then x — j is a factor of f and we know that f is reducible. Thus, we
may assume that f(0), f(1), ..., f(n — 1) are nonzero. Create a set
of polynomials as follows:

Fix an integer 0 < d < n.

Fix divisors ag, a4, ...,aq € Z of f(0), f(1),..., f(d) € Z.

Use the Lagrange interpolation formula to construct g € Q[x]

such that deg(g) < d and g(j) = a;forall0 < j < d.

Accept g if deg(g) = d and g € Z[x]; otherwise reject it.

Doing this for all 0 < d < n and all divisors of f(0), f(1),..., f(d)
defines a set of polynomials g € Z[x].

3.1.1 Proposition. This set of polynomials g € Z[x] is finite. Moreover,
the polynomial f is irreducible over Q if and only if it is not divisible by
any of the polynomials in this set.

Proof. Since we may assume that f(0), f(1),..., f(d) are nonzero,
each f(j) has only finitely many divisors. Hence, there are only
finitely many choices for ay, a,, ...,a4 € Z. Since g is uniquely de-
termined by the aj, there are only finitely many such g’s.

We claim that f is reducible if and only if it is divisible by one
of theses polynomials. One direction is obvious. For the other di-
rection, suppose that f is reducible. By Corollary 3.1.0, there exists
g, h € Z[x] such that f = gh and deg(g) = d where 0 < d < n.
Set a; := g(i) for 0 < j < d. Observe that g; divides f(j) because
f(j) = g(j)h(j). The Lagrange interpolation formula produces
g € Q[x] of degree at most d such that g(j) = a; forall 0 < i < d.
Since g— g has degree at most d and vanishes at d + 1 points, it must
by the zero polynomial. Hence, g = g is on our list. O

3.1.2 Eisenstein Criterion. Letn be a positive integer and consider the
polynomial f = agx™ +a;x" ' + --- a,, € Z[x]. Whenever there exists a

prime p € Z such that p does not divide a,, p divides a;, a,, ...,a,, and
p? does not divide a,,, the polynomial f is irreducible over Q.
Comment on proof. See MATH 210. O
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From a computational point of view,
this algorithm is dreadful. The first
polynomial time algorithm for
factoring rational polynomials
appears in A.K. Lenstra, HW. Lenstra,
L. Lovasz, Laszld, Factoring polynomials
with rational coefficients, Math. Ann.,
261 (1982) 515-534.

Theodor Schonemann first published
a version of this criterion in 1846.
Gotthold Eisenstein published a
somewhat different version in the
same journal in 1850.
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https://link.springer.com/article/10.1007/BF01457454
https://link.springer.com/article/10.1007/BF01457454
https://mathshistory.st-andrews.ac.uk/Biographies/Eisenstein/

3.1.3 Problem. For all integers n = 2 and any prime p, prove that
X" + px + p is irreducible over Q.

Solution. For the prime p, the Eisenstein criterion implies that f is
irreducible over Q. O

3.1.4 Problem. For every prime integer p, prove that
f=xP 4 xP24 .o+ x+1

is irreducible in Q[x].

Solution. Since (x — 1) f(x) = xP — 1, the ring isomorphism given
by x » y + 1yields

Y@+ =@+1P-1=yP+(1)yP 7+ (5)yP 2+ +(2)y.
We have (¥) = w. When i < p, the prime integer p is not
a factor of i!, so i! divides the product (p — 1)(p —2)---(p—i+ 1)
which implies that () is divisible by p. Dividing the expansion of
¥ f(y + 1) by y shows that f(y + 1) satisfies the hypothesis of the
Eisenstein criterion. Therefore, the polynomial

P+ (R + (23 e+ ()
is irreducible. We conclude that f is irreducible. O

3.1.5 Proposition. Let K be a field. For every prime integerp € Z, the
polynomial f = xP — a € K[x] is irreducible over K if and only if f has
norootsinK.

Proof. Suppose that f hasaroot a € K. It follows that x —a € K[x]
is a factor, so f is reducible.

Suppose that f is reducible. By Theorem 2.0.6, there exists a field
extension K C L over which f splits completely:

f=G-apx—-—ay)-(x—)
for some ay, &, ..., ¢, € L. If a; = 0, then f has arootin K, so we
may assume that o; # 0. Foralll < j < p, set{; = a;/a;. Since
af = a, we see that

p
gp ﬁ:gzl
J o([i’ a

It follows that a; = {;a; where {; is a pth root of unity. Hence, we

obtain f = (x — {y001)(x — $a7) -+ (x = {poxy).
Now, suppose that f = gh where g,h € K[x], r := deg(g) < p,

and s := deg(h) < p. We may assume that both g and h are monic.

Since K[x] is a unique factorization domain, the polynomial g must
be a product of r of the linear factors. After relabeling if necessary,
we may assume that g = (x — &;o)(x — &0t1) -+ (x — ¢,ay). Since
the constant term of g lies in K, this implies that {a} € K where
¢ =1¢¢,---¢,. Notice that {? = 1. Since 0 < r < p and p is prime,
there exists k, ¢ € Z such that kr + ellp = 1. It follows that
Shay = Sk = (Gap)M(ad) € K.

Hence, we see that (¢*a; )P = (¢P)kal = a which shows that ¢*a is
aroot of f = xP — a lying in K. O
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Let K be a subfield of R and let p be
an odd prime. For all a € K, define
% to be the real pth root of a. Since p
is odd, % is the only real pth root of
a. Proposition 3.1.5 establishes that
XxP — a is irreducible over K if and only

it {a¢K.
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