
Problems 02
Due꞉ Friday, 16 January 2026 before 23꞉59 ET

P2.1. Ⅽonsider the cubic equation 𝑥3 + 𝑥 − 2 = 0.
i. Use Ⅽardano’s formulas (carefully) to derive the surprising formula
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and use this to explain part i.

P2.2. i. Show that
3
√4+ i√11 ∈ ℂ is not of the form 𝑎 + i𝑏√11 for some 𝑎, 𝑏 ∈ ℤ.

ii. Find a cubic polynomial of the form 𝑦3 + 𝑝𝑦 + 𝑞 with 𝑝, 𝑞 ∈ ℤ which has
3
√4+ i√11 +

3
√4− i√11

as a root.

P2.3. Ⅽonsider the reduced cubic polynomial 𝑦3 + 𝑝𝑦 + 𝑞 with real coefficients. Assume
that its discriminant is positive: Δ∶= −(4𝑝3 + 27𝑞2) > 0.
i. Explain why 𝑝 < 0.
ii. For a positive real number 𝜆, the substitution 𝑦 = 𝜆𝑡 transforms the reduced cubic
equation into 𝜆3𝑡3 + 𝜆𝑝𝑡 + 𝑞 = 0, which can be expressed as

4𝑡3 − (−4𝑝𝜆2 ) 𝑡 − (−4𝑞𝜆3 ) = 0 .

Show that this coincides with 4𝑡3 − 3𝑡 − cos(3𝜃) = 0 if and only if
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.

iii. Prove that
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||||
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iv. Explain how part iii implies that the last equation in part ii can be solved for 𝜃.
v. Show that 4𝑡3 − 3𝑡 − cos(3𝜃) has roots cos(𝜃), cos(𝜃 + 2𝜋

3 ), and cos(𝜃 +
4𝜋
3 ).

vi. Show that the roots of 𝑦3 + 𝑝𝑦 + 𝑞 are

𝑦1 = 2√
−𝑝
3 cos(𝜃) , 𝑦2 = 2√
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3 ) , 𝑦3 = 2√

−𝑝
3 cos(𝜃 +
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3 ) .
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