

Solutions 02

P2.1. Consider the cubic equation $x^3 + x - 2 = 0$.

i. Use Cardano's formulas (carefully) to derive the surprising formula

$$1 = \sqrt[3]{1 + \frac{2}{3}\sqrt{\frac{7}{3}}} + \sqrt[3]{1 - \frac{2}{3}\sqrt{\frac{7}{3}}}.$$

ii. Show that

$$1 + \frac{2}{3}\sqrt{\frac{7}{3}} = \left(\frac{1}{2} + \frac{1}{2}\sqrt{\frac{7}{3}}\right)^3,$$

and use this to explain part i.

Solution.

i. This reduced cubic has a unique real root because its discriminant is negative:

$$\Delta = -4(1^3) - 27(-2)^2 = -112 < 0.$$

Moreover, the equation $(1)^3 + (1) - 2 = 0$ shows that this real root equals 1.

On the other hand, the product of the real cube roots

$$z_1 = \sqrt[3]{\frac{1}{2}\left(2 + \sqrt{4 + \frac{4(1)^3}{27}}\right)} = \sqrt[3]{1 + \frac{2}{3}\sqrt{\frac{7}{3}}},$$

$$z_2 = \sqrt[3]{\frac{1}{2}\left(2 - \sqrt{4 + \frac{4(1)^3}{27}}\right)} = \sqrt[3]{1 - \frac{2}{3}\sqrt{\frac{7}{3}}},$$

is $1/3 = p/3$, so Cardano's formula shows that the unique real root of this reduced cubic is

$$1 = \sqrt[3]{1 + \frac{2}{3}\sqrt{\frac{7}{3}}} + \sqrt[3]{1 - \frac{2}{3}\sqrt{\frac{7}{3}}}.$$

ii. The binomial theorem gives

$$\begin{aligned} \left(\frac{1}{2} \pm \frac{1}{2}\sqrt{\frac{7}{3}}\right)^3 &= \left(\frac{1}{2}\right)^3 \pm 3\left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\sqrt{\frac{7}{3}}\right) + 3\left(\frac{1}{2}\right)\left(\frac{1}{2}\sqrt{\frac{7}{3}}\right)^2 \pm \left(\frac{1}{2}\sqrt{\frac{7}{3}}\right)^3 \\ &= \frac{1}{8} \left(1 \pm 3\sqrt{\frac{7}{3}} + 7 \pm \frac{7}{3}\sqrt{\frac{7}{3}}\right) = \frac{1}{8} \left(8 \pm \frac{16}{3}\sqrt{\frac{7}{3}}\right) = 1 \pm \frac{2}{3}\sqrt{\frac{7}{3}}. \end{aligned}$$

It follows that

$$\sqrt[3]{1 + \frac{2}{3}\sqrt{\frac{7}{3}}} + \sqrt[3]{1 - \frac{2}{3}\sqrt{\frac{7}{3}}} = \left(\frac{1}{2} + \frac{1}{2}\sqrt{\frac{7}{3}}\right) + \left(\frac{1}{2} - \frac{1}{2}\sqrt{\frac{7}{3}}\right) = 1. \quad \square$$

P2.2. i. Show that $\sqrt[3]{4 + i\sqrt{11}} \in \mathbb{C}$ is not of the form $a + ib\sqrt{11}$ for some $a, b \in \mathbb{Z}$.
ii. Find a cubic polynomial of the form $y^3 + py + q$ with $p, q \in \mathbb{Z}$ which has

$$\sqrt[3]{4 + i\sqrt{11}} + \sqrt[3]{4 - i\sqrt{11}}$$

as a root.

Solution.

i. Suppose that there exists $a, b \in \mathbb{Z}$ such that $4 + i\sqrt{11} = (a + ib\sqrt{11})^3$. The binomial theorem would give

$$\begin{aligned}(a + ib\sqrt{11})^3 &= a^3 + 3a^2(ib\sqrt{11}) + 3a(ib\sqrt{11})^2 + (ib\sqrt{11})^3 \\ &= (a^3 - 33ab^2) + i\sqrt{11}(3a^2b - 11b^3) = 4 + i\sqrt{11}.\end{aligned}$$

It would follow that $4 = a^3 - 33ab^2 = a(a^2 - 33b^2)$ and $1 = b(3a^2 - 11b^2)$. Since a and b are integers, we would deduce that a divides 4 and b divides 1. In particular, we have a is either ± 1 , ± 2 , or ± 4 , and $b = \pm 1$. Hence, the integer $a^2 - 33b^2$ would also divide 4 and satisfy $a^2 - 33b^2 = a^2 - 33 \leq 16 - 33 \leq -17$ which is absurd. We conclude that the $4 + i\sqrt{11} = (a + ib\sqrt{11})^2$ has no solutions with $a, b \in \mathbb{Z}$.

ii. Consider the reduced cubic polynomial $y^3 - 9y - 8 \in \mathbb{Z}[y]$. The product of the cube roots

$$\begin{aligned}z_1 &= \sqrt[3]{\frac{1}{2} \left(8 + \sqrt{64 + \frac{4(-9)^3}{27}} \right)} = \sqrt[3]{4 + \sqrt{16 - 27}} = \sqrt[3]{4 + i\sqrt{11}}, \\ z_2 &= \sqrt[3]{\frac{1}{2} \left(8 - \sqrt{64 + \frac{4(-9)^3}{27}} \right)} = \sqrt[3]{4 - \sqrt{16 - 27}} = \sqrt[3]{4 - i\sqrt{11}},\end{aligned}$$

is $-3 = -9/3$, so Cardano's formula shows a root of this reduced cubic is

$$z_1 + z_2 = \sqrt[3]{4 + i\sqrt{11}} + \sqrt[3]{4 - i\sqrt{11}}. \quad \square$$

P2.3. Consider the reduced cubic polynomial $y^3 + py + q$ with real coefficients. Assume that its discriminant is positive: $\Delta := -(4p^3 + 27q^2) > 0$.

i. Explain why $p < 0$.
ii. For a positive real number λ , the substitution $y = \lambda t$ transforms the reduced cubic equation into $\lambda^3 t^3 + \lambda p t + q = 0$, which can be expressed as

$$4t^3 - \left(\frac{-4p}{\lambda^2}\right)t - \left(\frac{-4q}{\lambda^3}\right) = 0.$$

Show that this coincides with $4t^3 - 3t - \cos(3\theta) = 0$ if and only if

$$\lambda = 2\sqrt{\frac{-p}{3}} \quad \text{and} \quad \cos(3\theta) = \frac{3\sqrt{3}q}{2p\sqrt{-p}}.$$

iii. Prove that

$$\left| \frac{3\sqrt{3}q}{2p\sqrt{-p}} \right| < 1.$$

iv. Explain how part iii implies that the last equation in part ii can be solved for θ .
v. Show that $4t^3 - 3t - \cos(3\theta)$ has roots $\cos(\theta)$, $\cos(\theta + \frac{2\pi}{3})$, and $\cos(\theta + \frac{4\pi}{3})$.
vi. Show that the roots of $y^3 + py + q$ are

$$y_1 = 2\sqrt{\frac{-p}{3}} \cos(\theta), \quad y_2 = 2\sqrt{\frac{-p}{3}} \cos(\theta + \frac{2\pi}{3}), \quad y_3 = 2\sqrt{\frac{-p}{3}} \cos(\theta + \frac{4\pi}{3}).$$

Solution.

i. Since the square of any real number is nonnegative, we see that $q^2 \geq 0$. The hypothesis $\Delta > 0$ implies that $-4p^3 = \Delta + 27q^2 > 0$, so $p^3 < 0$. The function $x \mapsto x^3$ is increasing when $x < 0$ because its derivative $3x^2$ is positive. We deduce that $p < 0$.

ii. Comparing coefficients gives

$$\begin{aligned} \frac{-4p}{\lambda^2} = 3 &\Rightarrow \lambda = \sqrt{\frac{4(-p)}{3}} = 2\sqrt{\frac{-p}{3}}, \\ \frac{-4q}{\lambda^3} = \cos(3\theta) &\Rightarrow \cos(3\theta) = \frac{-4q}{\lambda^3} = \left(\frac{-4q}{1}\right)\left(\frac{3}{-4p}\right)\left(\frac{1}{2}\sqrt{\frac{-p}{3}}\right) = \frac{3\sqrt{3}q}{2p\sqrt{-p}}. \end{aligned}$$

iii. The assumption that $\Delta > 0$ implies that $4p^3 + 27q^2 < 0$ and $0 \leq 27q^2 < -4p^3$. Since $p < 0$, it follows that

$$0 \leq \frac{27q^2}{-4p^3} < 1.$$

The function $x \mapsto \sqrt{x}$ is increasing when $x > 0$ because its derivative $1/2\sqrt{x}$ is positive. Hence, taking the positive square roots gives

$$0 \leq \sqrt{\frac{27q^2}{-4p^3}} = \frac{3\sqrt{3}|q|}{2|p|\sqrt{-p}} = \left| \frac{3\sqrt{3}q}{2p\sqrt{-p}} \right| < 1.$$

iv. Combining the principal inverse of the cosine function with Part iii, it follows that there exists a real number θ such that $0 \leq \theta \leq \pi$ and

$$\theta := \frac{1}{3} \arccos\left(\frac{3\sqrt{3}q}{2p\sqrt{-p}}\right).$$

v. Combining Euler's formula and the binomial theorem gives

$$\begin{aligned} \cos(3\theta) + i\sin(3\theta) &= \exp(3\theta i) = (\exp(\theta i))^3 \\ &= (\cos(\theta) + i\sin(\theta))^3 \\ &= \cos^3(\theta) + 3i\cos^2(\theta)\sin(\theta) - 3\cos(\theta)\sin^2(\theta) - i\sin^3(\theta). \end{aligned}$$

Comparing real parts and using the identity $\cos^2(\theta) + \sin^2(\theta) = 1$, we obtain

$$\begin{aligned} \cos(3\theta) &= \cos^3(\theta) - 3\cos(\theta)\sin^2(\theta) \\ &= \cos^3(\theta) - 3\cos(\theta)(1 - \cos^2(\theta)) = 4\cos^3(\theta) - 3\cos(\theta). \end{aligned}$$

In particular, the equation $4\cos^3(\theta) - 3\cos(\theta) - \cos(3\theta) = 0$ implies that $\cos(\theta)$ is a root of $4t^3 - 3t - \cos(3\theta)$. Since

$$\cos\left(3\left(\theta + \frac{2\pi}{3}\right)\right) = \cos(3\theta) \quad \text{and} \quad \cos\left(3\left(\theta + \frac{4\pi}{3}\right)\right) = \cos(3\theta),$$

it follows that $\cos(\theta + \frac{2\pi}{3})$ and $\cos(\theta + \frac{4\pi}{3})$ are also roots.

vi. Since $t = y/\lambda$, we conclude that the roots of $y^3 + py + q$ are

$$y_1 = 2\sqrt{\frac{-p}{3}}\cos(\theta), \quad y_2 = 2\sqrt{\frac{-p}{3}}\cos\left(\theta + \frac{2\pi}{3}\right), \quad y_3 = 2\sqrt{\frac{-p}{3}}\cos\left(\theta + \frac{4\pi}{3}\right).$$

where the real number θ is defined by

$$\theta := \frac{1}{3} \arccos \left(\frac{3\sqrt{3}q}{2p\sqrt{-p}} \right).$$

□