Written Exam
 Due: Thursday, 17 December 2020

INSTRUCTIONS

- Each question is worth 10 points.
- To receive full credit, you must explain your answers.
- Solutions are to be the result of an individual effort. For this examination, communication or collaboration with anyone other than the instructor is prohibited.
- Authorized materials are limited to course notes and problem sets (including solutions). The use of other resources is prohibited.
- Students are responsible for upholding the fundamental values of academic integrity.

PROBLEMS

1. The set $\mathrm{U}(n, K)$ consists of all unit upper triangular $(n \times n)$-matrices over the field K;

$$
\mathrm{U}(n, K):=\left\{\left.\left[\begin{array}{ccccc}
1 & * & \cdots & * & * \\
0 & 1 & \cdots & * & * \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & * \\
0 & 0 & \cdots & 0 & 1
\end{array}\right] \right\rvert\, \text { where } * \text { denotes an arbitrary element of } K\right\} .
$$

(i) Prove that $\mathrm{U}(n, K)$ is a subgroup of $\mathrm{GL}(n, K)$.
(ii) Let p be a prime integer, let e be a positive integer, let $q:=p^{e}$, and let \mathbb{F}_{q} be a finite field with q elements. Find a Sylow p-subgroup of $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$.
(iii) Let p be a prime integer and let e be a positive integer. Show that every finite group G of order p^{e} is isomorphic to a subgroup of $\mathrm{U}\left(p^{e}, \mathbb{F}_{p}\right)$.
2. (i) Let I be the ideal in $\mathbb{Z}[x]$ generated by $x-7$ and 15 . Prove that the quotient ring $\mathbb{Z}[x] / I$ is isomorphic to $\mathbb{Z} /\langle 15\rangle$.
(ii) Consider the factorization $3 x^{3}+4 x^{2}+3=(x+2)^{2}(3 x+2)=(x+2)(x+4)(3 x+1)$ in $\mathbb{F}_{5}[x]$. Explain why this equation does not contradict the fact that $\mathbb{F}_{5}[x]$ is a unique factorization domain.
(iii) Let p be a prime integer. Show that the polynomial $x^{p}+p x+(p-1)$ is irreducible in $\mathbb{Q}[x]$ if and only if p is greater than 2 .
3. For an abelian group G, the Pontrjagin dual is the group $D(G):=\operatorname{Hom}_{\mathbb{Z}}(G, \mathbb{Q} / \mathbb{Z})$.
(i) For any \mathbb{Z}-module homomorphism $\varphi: G \rightarrow H$, show that post-composition with φ induces a \mathbb{Z}-module homomorphism $D(\varphi): D(H) \rightarrow D(G)$.
(ii) Fixed element $g \in G$. Show that evaluation at g defines a \mathbb{Z}-module homomorphism $\psi_{g}: D(G) \rightarrow \mathbb{Q} / \mathbb{Z}$.
(iii) Prove the map $\Psi: G \rightarrow D(D(G))$ defined by $\Psi(g)=\psi_{g}$, for all $g \in G$, is a \mathbb{Z}-module homomorphism.
(iv) For any finite abelian group G, prove that Ψ : $G \rightarrow D(D(G))$ is an isomorphism.

