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Group Theory

As one of the older axiomatic systems and one of more commonly

used algebraic structures, we start with an exploration of groups.

Although this structure relies on a single underlying set and one
binary operation, this apparent simplicity belies the rich theory.

Notation. Throughout, the blackboard bold typeface is reserved for
special sets of numbers. For instance, N := {0, 1, 2, 3, ... } is the set of
nonnegative integers. This set includes zero.

1.0 Abstract Groups

1.0.0 Definition. A groupis a nonempty set G together with a binary
operation x : G X G — G satisfying the following three properties.
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Evariste Galois (1846) first employed
the word group in a sense close to the
modern meaning, whereas Arthur
Cayley (1854) gave the first axiomatic
definition of a group.

(associativity) Forall f,g,h € G,wehave (f xg)xh = f x (g% h).
(identity) There existse € Gsuchthatgxe=ex g =gforallg € G.
(inverse) For each g € G, there exists f € Gsuchthatgx f = fx g =e.

A group G is abelian or commutativeifaxb = bxaforalla,b € G.

1.0.1 Example. The integers Z, the rational numbers Q, the real
numbers R, the complex numbers C, and the quaternions H are
abelian groups under addition where the identity is e = 0 and the
inverse of the number c is —c. <&

1.0.2 Example. The nonzero rational numbers @X, the nonzero real
numbers R*, and the nonzero complex numbers C* are all abelian
groups under multiplication. In each of these groups, the identity
is e = 1 and the inverse of the nonzero number c is the reciprocal
¢! = 1/c. The nonzero quaternions H* form a non-abelian group
under multiplication. The nonzero integers do not form a group
under multiplication because the only integers with a multiplicative
inverse are 1. <

1.0.3 Example. The circle S' := {z € C : |z| = 1} is an abelian group
under multiplication where the identity is e = 1. <

The binary operation in a group is
called a product and is often denoted
by juxtaposition. For abelian groups,
the group operation is traditionally
denoted by +.

In making a definition, we emphasize
the definiendum, that which is being
defined, by switching between italic
and non-italic fonts and using a bold
typeface.
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1.0.4 Example. For any nonnegative integer n, the nth roots of unity
U, =k =e?kine C:0<k<n}

form an abelian group under multiplication. The identity is {° = 1

and the inverse of ¢¥ is ¢k, 3
: | 2 ; g Z 1.0.5 Example. The Klein 4-group is a group with four elements. In
flf e h g this group, each element is an involution (equal to its inverse) and
g|g h ; a the product any two of the three non-identity elements produces
h|h g e

the third. All products appear in Figure 1.1. <>
Figure 1.1: Multiplication table for the

Klein 4-group X X A
1.0.6 Example. For any nonnegative integer n, the general linear

group is the set of invertible (n x n)-matrices where the product
is matrix multiplication. It is a group because the product of two
invertible matrices is again invertible and the inverse of an invert-
ible matrix is invertible. The identity matrix is the identity element
in this group. To specify the type of entries in the matrices, we
write GL(n, Z), GL(n, Q), GL(n, R), or GL(n, C) for the general lin-

ear groups over Z, Q, R, or C respectively. &
We use a Fraktur typeface to denote 1.0.7 Example. For any set X, the symmetric group ©x of X is the set
special groups. The fraktur S is @. of the bijective maps from X to X with the group operation being
the composition of functions. The identity element in this group is
just the identity map. <&

1.0.8 Example. Let G be a group and X a nonempty set. The set of
maps from X to G equipped with the pointwise product is itself a
group. For all functions f,g: X — G, the product fg: X — G is
defined by (fg)(x) := f(x) * g(x). <&

1.0.9 Lemma. Let G be a group.
(i) There is a unique elemente € G such that, for allg € G, we have
gxe=exg=e.
(ii) For any element g € G, there exists a unique element f € G such
thatg *x f = f x g = e. This inverse of g is denoted by g~ := f.
(iii) Forallf,ge€ G,wehave(g™\)"'=gand(fxg) =gt xf~L

Proof.

(i) The identity axiom ensures that there exists an elemente € G
suchthatgxe =exg=-ceforallg € G. If ¢’ € G also has this
property, then we have e’ = e’ xe =e.

(ii) The inverse axiom ensures that there exists an element f € G
suchthatgx f = f x g = e. If f' € G also has this property,
thenwehave f' = f'xe = f'x(gxf) = (f'x@*xf =exf = f.

(iii) Since g x g7! = g7 x g = ¢, we see that g = (g~!)~!. We also
have (gx f)*(f~1xg™!) = gx(fxf~)*xg™! = gxg~! = ¢, which
yields (f"'xg D) x(gxf)=eand(g*x f) ! =flxgl. O



1.1 Permutations

The most important group is, perhaps, the symmetric group ©,, of

the finite set [n] := {1,2,...,n}. Elements in this group are called

permutations. There are three equivalent ways of thinking about

these permutations.

(a) A permutation is an arrangement of the distinct elements in the
set [n]. In one-line notation,bothoc:=25431and7:=52413
are permutations of the set [5] := {1, 2, 3, 4, 5}.

(b) A permutation is bijection from the set [n] to itself. From this
perspective, the permutations ¢ and 7 are the functions

c1)=2 o()=5
(1)=5 t(2)=2

0g3)=4 o(4)=3 o(5)=1,and
73)=4 7t(4)=1 1(5)=3.

This point of view allows one to compose two permutations to
obtain a new permutation. For example, we have

(com)1)=0(r(1))=0(5)=1 (t00)1)=1(c(1))=7(2)=2
(co)(2)=0(1(2))=0(2) =5 (t00)(2)=1(0(2)) =17(5)=3
(c07)B)=0(1(3))=0(4) =3 (100)3)=1(0(3))=7(4) =1
(co1)(4) =0(1t(4)) =0(1) =2 (100)(4) =1(0(4) =1(3) =4
(6o7)(5) =0(1(5)) =c(3) =4 (t00)(5) =1(c(5)) =7(1) =5,

which impliesthatco7=15324andto0c=23145.
(c) Apermutationis a directed graph with vertexset{1, 2, ..., n}such
that each vertex is the head of an arrow and the tail of an arrow.

1.1.1 Proposition. For any nonnegative integer n, there are
n
nt:=nn-1)n-2)-@Q) =[]J
Jj=1

permutations of the set [n].

Inductive Proof. Since there is a unique map from the empty set to
any set, there a unique permutation of the set [0] = @. Since the
empty product equals 1, we also have 0! = 1, which establishes the
base case. For some nonnegative integer n, assume that there are n!
permutations of the set [n]. Constructing a permutation of the set
[n + 1], there are n + 1 choices for the first element in the arrange-
ment. By the induction hypothesis, there are n! arrangements of the
remaining n elements. Hence, the total number of permutations is
(n+ 1) =m+1). O

For each nonnegative integer n, the symmetric group ©,, on the set
[n] :={1,2,..., n}is the set of permutations together with the group
operation given by function composition. The identity permutation
id is given by the arrangement 12 --- n.
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Figure 1.2: Directed graphs of various
permutations

The 24 permutations of the set [4] are

1234 3412 2314
2134 4321 3124
3214 1423 2341
4231 1423 3421
1324 3241 3142
1432 4213 4312
1243 2431 2413
2143 4132 4123



8 CORE ALGEBRA I

A
19

Figure 1.3: Directed graph of a cycle

To eliminate the ambiguity in a cycle
decomposition, one typically begins
each cycle with its largest element
and lists the cycles in increasing order
by their first element. Cycles of length
1 are often omitted.

Figure 1.4: The cycle decomposition
ofc:=647251893¢€ Ggis
o=(42)(5)(61)(9378)

The 24 permutations of the set [4] are

MRG)@ GBDE2) (4B12)

QDG  GB2¢D @E21
@)@B DM@ (1)E23) @4123)
2)(3)41) (1)@432) (4132
(1)3B2)4) (2)(413) (4213)
1B)42) (2)(431) (4231)
1(2)43) ()(412) (4312
QD@43  (3)(421) (4321)

1.1.2 Definition. Given a sequence (i}, i3, ..., i,) of distinct elements
from the set [n], the cycle o := (i; i, --- i,) is the permutation in
©,, defined by o(iy) = i,,0(,) = i3,...,0(,_1) = i,,0(,) = i}, and
o(j) = jforall j € [n]\{i;,i,,..,1,}. Theunderlying set{iy, i,, ..., i,} is
the orbit of the cycle and the cardinality of the orbit is length of the
cycle. A transposition is a cycle of length 2. Two cycles are disjoint
if their orbits are disjoint.

Following the standard conventions for composing functions, we
multiply permutations from right to left. The two products of the
cycles(31)and (21)are(31)(21)=(B312)and (21)(31) =(321).

1.1.3 Lemma. Disjoint cycles commute.

Proof. Consider two disjoint cycles 0,7 € ©,,. It suffices to prove
that o o 7(i) = 7o g(i) for all i € [n]. Without loss of generality,
suppose that i is in the orbit of 7, so we have (i) = j # i. Since T
is injective, j is also in the orbit of 7. Because ¢ and 7t are disjoint,
o(i) = iand o(j) = j. It follows that o o 7(i) = j = 70 (). O

1.1.4 Proposition. For any nonnegative integer n, every permutation in
the symmetric group ©,, may be expressed as a disjoint union of cycles.

Proof. We describe an algorithm that factors a permutation into a
product of disjoint cycles.

Input: a permutation o of the finite set [n]
Output: a factorization w of o into a product of disjoint cycles
Initialize w := @
While there exists an i € [n] not appearing in @ do

Find the largest i € [n] not appearing in w;

Initialize r := 1;

While o"*1(i) #idor =r+1;

Prepend the cycle (i (i) o%(i) --- o"(i)) to w;
Return @
By design, each element in [n] appears in a unique cycle of @. The
inner while loop must terminate because every vertex is the head
of unique arrow and there are only finitely many vertices. O

1.1.5 Corollary. For any nonnegative integer n, every permutation in the
symmetric group ©,, is a product transpositions.

Proof. Itsufficesto factor cycles. For all positive integers r, we claim
that that (i; i, --- i,) = (i; i,)(i; i,_1) - (i; iy). We proceed by
induction on r. Since the empty product is the identity, the base
case r = 1 holds. Assuming the formula holds for r — 1, we have

(i1 ir)((il ir)(il ir—z) (il iz)) = (il ir)(il i - ir—l)
=(iy iy - i,). O



