1.6 Cosets

The choice of a subgroup leads to a surprising amount of structure on a group.

1.6.1 Definition. Let H be a subgroup of G. The left coset of H in G determined by an element $g \in G$ is the set $gH := \{gh \mid h \in H\}$. Similarly, the *right coset* is $H g := \{h g \mid h \in H\}$.

1.6.2 Example. Consider \mathbb{R}^2 as an additive abelian group. A line Lthrough the origin is a subgroup. For a point $p \in \mathbb{R}^2$, the left coset p + L is the line containing p parallel to L.

1.6.3 Example. Let $H := \langle (2 \ 1) \rangle$ be a subgroup of the symmetric group \mathfrak{S}_3 . The distinct left cosets and the distinct right cosets are

Copyright © 2020, Gregory G. Smith Last updated: 2020-09-06

The concept and notation for a coset was used by Évariste Galois. However, the term coset was introduced by George Abram Miller (1910).

$$H = (2 \ 1) H = \{(1), (2 \ 1)\},$$
 $H = H (2 \ 1) = \{(1), (2 \ 1)\},$ $(3 \ 1) H = (3 \ 1 \ 2) H = \{(3 \ 1), (3 \ 1 \ 2)\},$ $H (3 \ 1) = H (3 \ 2 \ 1) = \{(3 \ 1), (3 \ 2 \ 1)\},$ $(3 \ 2) H = (3 \ 2 \ 1) H = \{(3 \ 2), (3 \ 2 \ 1)\},$ $H (3 \ 2) = H (3 \ 1 \ 2) = \{(3 \ 2), (3 \ 1 \ 2)\}.$

Notice that they are not equal.

- 1.6.4 Lemma. Let H be a subgroup of a group G.
 - (i) The left cosets of H partition the elements in G.
- (ii) Two elements $f, g \in G$ belong to the same left coset of H if and only if the relation $g^{-1} f \in H$ holds.
- (iii) For any element $g \in G$, the map $h \mapsto gh$ defines a bijection from left coset H and the left coset gH.

Proof.

- (i) It suffices to prove that left cosets are equivalence classes for the *congruence* relation: two element $f, g \in G$ are congruent, denoted by $f \equiv g$, if there exists an element $h \in H$ such that f = gh. We verify that congruence is an equivalence relation. (*transitive*) Suppose that $f \equiv g$ and $g \equiv g'$. By definition, there exists elements $h, h' \in H$ such f = gh and g = g'h', so we obtain f = g'(h'h). Since $h'h \in H$, it follows that $f \equiv g'$. (symmetric) If $f \equiv g$, then there exists $h \in H$ such that f = gh, so $g = f h^{-1}$. Since $h^{-1} \in H$, it follows that $g \equiv f$. (reflexive) Since identity element $e \in G$ belongs to H, we see that, for all $g \in G$, we have g = ge and $g \equiv g$.
- (ii) The relation $f \in gH$ is equivalent to $f \equiv g$ or $g^{-1} f \in H$.
- (iii) The inverse map sends $f \in gH$ to the element $g^{-1} f$ which by part (ii) belongs to H.

1.6.5 Definition. For any subgroup H of a group G, the *index* [G:H]is the number of distinct left cosets of H in G.

1.6.6 Example. Example 1.6.3 shows that $[\mathfrak{S}_3 : \langle (2 \ 1) \rangle] = 3$. \Diamond

The map $gH \mapsto Hg^{-1}$ defines a bijection between left and right cosets of *H* in *G*, so the index is also the number of distinct right cosets.

The family of matrices

$$\left\{ \begin{bmatrix} r & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} \middle| r \in \mathbb{R}^{\times} \right\}$$

forms a complete set of coset representatives for $SL(n, \mathbb{R})$ in $GL(n, \mathbb{R})$.

Joseph-Louis Lagrange (1771) gives a special case of this theorem in work that predates the definition of a group. Camille Jordan (1861) first proves the general form, but attributes the basic idea to Lagrange.

1.6.7 Example. Given a positive integer n, consider the subgroup $\langle n \rangle$ in \mathbb{Z} . For any $m \in \mathbb{Z}$, the left coset $m + \langle n \rangle$ consists of all integers that have the same remainder as m upon division by n. Since the possible remainders are greater than or equal to 0 and less than n, it follows that $[\mathbb{Z} : \langle n \rangle] = n$.

1.6.8 Example. Given a positive integer n, consider the subgroup $SL(n, \mathbb{R})$ of $GL(n, \mathbb{R})$. Two matrices $A, B \in GL(2, \mathbb{R})$ belong to the same left coset of $SL(n, \mathbb{R})$ if and only if we have $det(A^{-1}B) = 1$ or det(A) = det(B). We deduce that $[GL(n, \mathbb{R}) : SL(n, \mathbb{R})] = \infty$. ♦

1.6.9 Theorem (Lagrange). For any subgroup H of a group G, we have $|G| = |H| \cdot [G:H]$. In particular, if G is a finite group, then the order and index of any subgroup are divisors of the order of G.

Proof. By Lemma 1.6.4, the cosets of H partition the group G into [G:H] sets and each of these cosets has |H| elements. It follows that $|G| = |H| \cdot [G:H]$.

1.6.10 Corollary. Let G be a finite group.

- (i) For all $g \in G$, the order of the element g is a divisor of |G|.
- (ii) For all $g \in G$, we have $g^{|G|} = e$.

Proof. Since the order of an element is the order of the subgroup it generates, Theorem 1.6.9 shows that the order of g is a divisor of |G|. Combining part (i) with Lemma 1.2.10 (ii) proves the second part. \Box

1.6.11 Corollary. *Every group of prime order is cyclic.*

Proof. Let *G* be a finite group of prime order. Choose $e \neq g \in G$ and consider the subgroup $H := \langle g \rangle$. Since $\{e,g\} \subseteq H$, we see |H| > 1. Since p is prime and Theorem 1.6.9 shows that |H| is a divisor of |G| = p, we deduce that |H| = p which means H = G.

1.6.12 Example (Classifying groups of order at most 5). Let G be a finite group with $|G| \leq 5$. If $|G| \in \{1, 2, 3, 5\}$, then Corollary 1.6.11 shows that G is cyclic. When |G| = 4, Corollary 1.6.10 implies that every non-identity element has order 2 or 4. There are two cases. (cyclic) When G has an element of order 4, the group G is cyclic. (non-cyclic) Suppose that G does not have an element of order 4. It

follows that $G = \{e, f, g, h\}$ and $f^2 = g^2 = h^2 = e$. If fg = e then we would $fg = f^2$ and g = f which cannot be. Similarly, the product fg cannot equal f or g, so we must have fg = h. Analogous arguments demonstrate that gf = h, hf = g = fh, and gh = f = hg. Thus, G is the Klein 4-group; see Figure 1.1. \diamond

Normal Subgroups 1.7

Being the kernel of a group homomorphism distinguishes an indispensable class of subgroups.

1.7.1 **Definition**. A subgroup *K* of *G* is *normal* if, for all $k \in K$ and all $g \in G$, the product $g k g^{-1}$ belongs to K.

1.7.2 Example. Every subgroup of an abelian group is normal.

1.7.3 Example. The subgroup
$$\langle (2\ 1) \rangle$$
 in \mathfrak{S}_3 is not normal because $(3\ 1\ 2)(2\ 1)(3\ 1\ 2)^{-1} = (3\ 1\ 2)(2\ 1)(3\ 2\ 1) = (3\ 2) \notin \langle (2\ 1) \rangle$.

1.7.4 Remark. Given an element k in a group G, a *conjugate* of k is any element in G of the form $g k g^{-1}$ for some $g \in G$. With this terminology, we see that a subgroup K in a group G is normal if and only if the subset *K* contains all the conjugates of its elements.

1.7.5 Example. Every upper triangular matrix is similar to a lower triangular matrix, so the subgroup of upper triangular matrices in not a normal subgroup of $GL(n, \mathbb{R})$.

1.7.6 Example. The center $Z(G) := \{g \in G : hg = gh \text{ for all } h \in G\}$ is normal because it contains all the conjugates of its elements. \diamond

1.7.7 Lemma. *The kernel of a group homomorphism is normal.*

Proof. Let $\varphi: G \to H$ be a group homomorphism. Given elements $k \in \text{Ker}(\varphi)$ and $g \in G$, we have

$$\varphi(g k g^{-1}) = \varphi(g) \varphi(k) \varphi(g^{-1}) = \varphi(g) e_H \varphi(g)^{-1} = e_H$$

Therefore, we conclude that $g k g^{-1} \in \text{Ker}(\varphi)$.

1.7.8 Example. Since the subgroup $SL(n, \mathbb{R})$ in $GL(n, \mathbb{R})$ is the kernel of the map det: $GL(n, \mathbb{R}) \to \mathbb{R}^{\times}$, it is a normal subgroup.

1.7.9 Lemma. A subgroup K of G is normal if and only if, for any element $g \in G$, we have gK = Kg.

Proof.

- (⇒) Let $gk \in gK$. Since K is normal, we have $gkg^{-1} \in K$, so we deduce that $gk = (gkg^{-1})g \in Kg$ and $gK \subseteq Kg$. Conversely, let $k g \in K g$. Normality gives $(g^{-1})k(g^{-1})^{-1} = g^{-1}kg \in K$, so we deduce that $kg = g(g^{-1}kg) \in gK$ and $Kg \subseteq gK$.
- (\Leftarrow) Suppose that gK = Kg for all g ∈ G. Given an element k ∈ K, there exists $k' \in K$ such that gk = k'g. It follows that, for all $g \in G$, we have $g k g^{-1} \in K$.

1.7.10 **Definition**. Let $\mathcal{P}^*(G)$ be the set of all nonempty subsets of a group G. We define a binary operation on $\mathcal{P}^*(G)$ as follows: given $X, Y \in \mathcal{P}^*(G)$, set $X Y := \{x \ y \in G \mid x \in X, y \in Y\}$.

Copyright © 2020, Gregory G. Smith Last updated: 2020-09-07

When *K* is a normal subgroup of a group G, one typically writes $K \subseteq G$.

Two matrices A, B are similar if and only if they are conjugate: there exists a nonsingular matrix $P \in GL(n, \mathbb{R})$ such that $B = PAP^{-1}$.

The associativity of the product in *G* implies that this binary operation is also associative.

We can also view the elements of G/K as equivalence classes, with the multiplication (gK)(hK) = ghK being independent of the choice of representatives.

When K is a normal subgroup, we call G/K the *quotient* group. When $|G| < \infty$, Theorem 1.6.9 establishes that |G/K| = [G:K] = |G|/|K|.

1.7.11 Example. The singleton $\{e\}$ is the identity for this product on $\mathcal{P}^*(G)$. The product of any singleton $\{g\}$ with a subgroup H is the left coset gH or the right coset H g. For any subgroup H, we also have HH = H.

1.7.12 Theorem. Let G/K denote the family of all left cosets of a subgroup K of G. When K is normal, we have (gK)(hK) = ghK for all $g, h \in G$ and G/K is a group under this operation.

Proof. We view (gK)(hK) as the product of 4 elements in $\mathcal{P}^*(G)$. The associativity of the product in $\mathcal{P}^*(G)$ and the normality of K imply that (gK)(hK) = g(Kh)K = g(hK)K = ghK. Hence, the product on $\mathcal{P}^*(G)$ induces a binary operation on G/K. Since the product on $\mathcal{P}^*(G)$ is associativity, this operation on G/K also is. The left coset K = eK is the identity because

$$(eK)(gK) = egK = gK = geK = (gK)(eK).$$

The inverse of the left coset gK is $g^{-1}K$ because

$$(g^{-1}K)(gK) = g^{-1}gK = eK = gg^{-1}K = (gK)(g^{-1}K).$$

1.7.13 Corollary. Every normal subgroup K in a group G is the kernel of the canonical map $\pi: G \to G/K$ defined by $\pi(g) := gK$.

Proof. Since (g K)(h K) = gh K is equivalent to $\pi(g) \pi(h) = \pi(gh)$, the map π is a surjective group homomorphism. Since the left coset K is the identity element in the quotient group G/K, it follows that $Ker(\pi) = \{g \in G \mid \pi(g) = K\} = \{g \in G \mid g K = K\} = K$.

1.7.14 Corollary. Let $\varphi: G \to G'$ be a group homomorphism. Assume that K is a normal subgroup of G and K' is a normal subgroup of G' such that $\varphi(K) \subseteq K'$. The induced map $\overline{\varphi}: G/K \to G'/K'$, defined by $\overline{\varphi}(gK) := \varphi(g)K'$, is a group homomorphism.

Proof. Given gK = hK, it follows that $g^{-1}h \in K$ and

$$\varphi(g)^{-1} \varphi(h) = \varphi(g^{-1} h) \in \varphi(K) \subseteq K'$$
.

Hence, we have $\varphi(g)K'=\varphi(h)K'$, so $\overline{\varphi}$ is well-defined. Since φ is a group homomorphism and both K and K' are normal subgroups, we see that

$$\overline{\varphi}((gK)(hK)) = \overline{\varphi}(ghK) = \varphi(gh)K' = \varphi(g)\varphi(h)K'$$
$$= (\varphi(g)K')(\varphi(h)K') = \overline{\varphi}(gK)\overline{\varphi}(hK).$$

Hence, the map $\overline{\varphi}$ is a group homomorphism.