1.6 Cosets

The choice of a subgroup leads to a surprising amount of structure
on a group.

1.6.1 Definition. Let H be a subgroup of G. The left coset of H in
G determined by an element g € GisthesetgH := {gh | h € H}.
Similarly, the right cosetis Hg:={hg| h € H}.

1.6.2 Example. Consider R’ as an additive abelian group. A line L
through the origin is a subgroup. For a point p € R?, the left coset
p + L is the line containing p parallel to L. <&

1.6.3 Example. Let H := ((2 1)) be a subgroup of the symmetric
group ©@;. The distinct left cosets and the distinct right cosets are
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The concept and notation for a coset
was used by Evariste Galois. However,
the term coset was introduced by
George Abram Miller (1910).

H=2 DH ={1),(2 1}, H=H(2 1) ={1),2 1},
BDH=B12H={31,312)}, H31)=H@B21)={3 1,3 2 1)},
B2H=B21)H={32),321)}, HB2=HB12)={32),312).

Notice that they are not equal. <>

1.6.4 Lemma. Let H be a subgroup of a group G.
(i) The left cosets of H partition the elements in G.
(ii) Two elements f, g € G belong to the same left coset of H if and only
if the relationg™' f € H holds.
(iii) For any elementg € G, the map h — g h defines a bijection from
left coset H and the left coset g H.

Proof.

(i) It suffices to prove that left cosets are equivalence classes for
the congruence relation: two element f,g € G are congruent,
denoted by f = g, if there exists an element h € H such that
f = gh. We verify that congruence is an equivalence relation.
(transitive) Suppose that f = g and g = g’. By definition, there

exists elements h,h’ € Hsuch f = ghand g = g' h’, so we
obtain f = g’ (h' h). Since h' h € H, it follows that f = g'.
(symmetric) If f = g, then there exists h € H such that f = gh,
sog = fh1. Since h~! € H, it follows that g = f.
(reflexive) Since identity element e € G belongs to H, we see
that,forallg € G,wehave g = geandg=g.

(ii) The relation f € gH is equivalentto f =gor g~ f € H.

(iii) The inverse map sends f € g H to the element g~! f which by
part (ii) belongs to H. O

1.6.5 Definition. For any subgroup H of a group G, the index [G : H]
is the number of distinct left cosets of H in G.

1.6.6 Example. Example 1.6.3 shows that [&; : ((2 1))] = 3. &

The map gH +— H g~! defines a
bijection between left and right cosets
of H in G, so the index is also the
number of distinct right cosets.
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The family of matrices

r00--0
010--0
001--0
0001

forms a complete set of coset repre-
sentatives for SL(n, R) in GL(n, R).

reRX}

Joseph-Louis Lagrange (1771) gives a
special case of this theorem in work

that predates the definition of a group.

Camille Jordan (1861) first proves the
general form, but attributes the basic
idea to Lagrange.

1.6.7 Example. Given a positive integer n, consider the subgroup (n)
in Z. For any m € Z, the left coset m + (n) consists of all integers
that have the same remainder as m upon division by xn. Since the
possible remainders are greater than or equal to 0 and less than n,
it follows that [Z : (n)] = n. <>

1.6.8 Example. Given a positive integer n, consider the subgroup
SL(n,R) of GL(n,R). Two matrices A,B € GL(2,R) belong to the
same left coset of SL(n, R) if and only if we have det(A='B) = 1 or
det(A) = det(B). We deduce that [GL(n,R) : SL(n, R)] = . <

1.6.9 Theorem (Lagrange). For any subgroup H of a group G, we have
|G| = |H| - [G : H]. In particular, if G is a finite group, then the order
and index of any subgroup are divisors of the order of G.

Proof. By Lemma 1.6.4, the cosets of H partition the group G into
[G : H] sets and each of these cosets has |H| elements. It follows
that |G| = |H| - |G : H]. O

1.6.10 Corollary. Let G be a finite group.
(i) Forallg € G, the order of the element g is a divisor of |G|.
(i) Forallg € G, we haveg!®! = e.

Proof. Since the order of an element is the order of the subgroup it
generates, Theorem 1.6.9 shows that the order of g is a divisor of |G]|.
Combining part (i) with Lemma 1.2.10 (ii) proves the second part. [

1.6.11 Corollary. Every group of prime order is cyclic.

Proof. Let G be a finite group of prime order. Choose e # g € G and
consider the subgroup H := (g). Since {e,g} C H, we see [H| > 1.
Since p is prime and Theorem 1.6.9 shows that |H]| is a divisor of
|G| = p, we deduce that |H| = p which means H = G. O

1.6.12 Example (Classifying groups of order at most 5). Let G be a
finite group with |G| < 5. If |G| € {1, 2, 3,5}, then Corollary 1.6.11
shows that G is cyclic. When |G| = 4, Corollary 1.6.10 implies that
every non-identity element has order 2 or 4. There are two cases.
(cyclicc When G has an element of order 4, the group G is cyclic.
(non-cyclic) Suppose that G does not have an element of order 4. It
follows that G = {e, f,g,h}and f2 = g2 = h> =e. If fg=e
then we would fg = f2? and g = f which cannot be. Similarly,
the product f g cannot equal f or g, so we must have fg = h.
Analogous arguments demonstrate thatg f = h,hf = g = fh,
andgh = f = hg. Thus, GistheKlein 4-group; see Figure1.1. <



1.7 Normal Subgroups

Being the kernel of a group homomorphism distinguishes an indis-
pensable class of subgroups.

1.7.1 Definition. A subgroup K of G is normal if, for all k € K and
all g € G, the product gk g~! belongs to K.

1.7.2 Example. Every subgroup of an abelian group is normal. <

1.7.3 Example. The subgroup ((2 1)) in &; is not normal because
(312)21GB12)'=(312)21)(321)=(32)&((21). &

1.7.4 Remark. Given an element k in a group G, a conjugate of k is
any element in G of the form gkg~! for some g € G. With this
terminology, we see that a subgroup K in a group G is normal if and
only if the subset K contains all the conjugates of its elements.

1.7.5 Example. Every upper triangular matrix is similar to a lower
triangular matrix, so the subgroup of upper triangular matrices in
not a normal subgroup of GL(n, R). <&

1.7.6 Example. The center Z(G) := {g € G : hg = ghforall h € G}
is normal because it contains all the conjugates of its elements. <

1.77 Lemma. The kernel of a group homomorphism is normal.

Proof. Let ¢ : G - H be a group homomorphism. Given elements
k € Ker(¢) and g € G, we have

p(gkg™) = p(@ p(k) p(g™") = p(g) en p(8)~" = en,
Therefore, we conclude that gk g=! € Ker(gp). O

1.7.8 Example. Since the subgroup SL(n, R) in GL(n, R) is the kernel
of the map det: GL(n, R) — R*, it is a normal subgroup. S

1.7.9 Lemma. A subgroup K of G is normal if and only if, for any element
g€ G,wehavegK =K g.

Proof.

(=) Let gk € gK. Since K is normal, we have gkg~! € K, so we
deduce that gk = (gkg !)g € Kgand gK C K g. Conversely,
let kg € K g. Normality gives (g~ )k(g7!)' = g 'kg € K, so
we deduce thatk g = g(g7'kg) e gKand K g C gK.

(<) Supposethat gK = K g for all g € G. Given an element k € K,
there exists k' € K such that gk = k' g. It follows that, for all
geG,wehavegkg ! eK. O

1.7.10 Definition. Let P*(G) be the set of all nonempty subsets of a
group G. We define a binary operation on 2*(G) as follows: given
X, Y eP*(G),set XY ={xyeG|xeX,yeY}
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When K is a normal subgroup of a
group G, one typically writes K 4 G.

Two matrices A, B are similar if and
only if they are conjugate: there exists
a nonsingular matrix P € GL(n, R)
such that B =PAP~1.

The associativity of the product in G
implies that this binary operation is
also associative.
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We can also view the elements of
G/K as equivalence classes, with the
multiplication (§K)(hK) = ghK
being independent of the choice of
representatives.

When K is a normal subgroup, we
call G/K the quotient group. When
|G| < o0, Theorem 1.6.9 establishes
that |G/K| =[G : K] = |G|/ |K]|.

1.7.11 Example. The singleton {e} is the identity for this product on
P*(G). The product of any singleton {g} with a subgroup H is the
left coset g H or the right coset H g. For any subgroup H, we also
have HH = H. <>

1.712 Theorem. Let G/K denote the family of all left cosets of a subgroup
K of G. WhenK is normal, we have (g K)(hK) = ghK forallg,he G
and G/K is a group under this operation.

Proof. We view (g K)(hK) as the product of 4 elements in P*(G).
The associativity of the product in 2*(G) and the normality of K
imply that (gK)(hK) = g(Kh)K = g(hK)K = ghK. Hence, the
product on P*(G) induces a binary operation on G/K. Since the
product on P*(G) is associativity, this operation on G/K also is. The
left coset K = eK is the identity because

(eK)(gK)=egK =gK =geK = (gK)(eK).
The inverse of the left coset gK is g~' K because
(§7'K)(gK) =g 'gK=eK=gg'K=(gK)(g'K). O

1.7.13 Corollary. Every normal subgroup K in a group G is the kernel of
the canonical map 7 : G — G/K defined by 7(g) := gK.

Proof. Since (gK)(hK) = ghK is equivalent to 7r(g) w(h) = n(gh),
the map 7 is a surjective group homomorphism. Since the left coset
K is the identity element in the quotient group G/K, it follows that
Ker(m) ={geG|n(g) =K}={geG|gK=K}=K. O

1.7.14 Corollary. Let ¢ : G — G' be a group homomorphism. Assume
that K is a normal subgroup of G and K’ is a normal subgroup of G’
such that (K) C K'. The induced map ¢ : G/K — G’'/K’, defined by
»(gK):= ¢(g)K', is a group homomorphism.

Proof. Given gK = hK, it follows that g~'h € K and

p(@)'eh) =p(g'h)e p(K) CK'.

Hence, we have ¢(g) K’ = ¢(h)K’, so ¢ is well-defined. Since ¢ is
a group homomorphism and both K and K’ are normal subgroups,
we see that

9((gK)(hK)) = p(ghK) = p(gh)K' = ¢(g) p(h) K’
= (p(@K')(@(WK') = p(gK)p(hK).

Hence, the map @ is a group homomorphism. O



