3.8 Diagonalizing Matrices

A finitely generated module over a principal ideal domain is given
by a matrix. By choosing appropriate bases of the source and target,
we may classifying these modules.

3.8.1 Definition. An (m x n)-matrix A = [a; ;] over a commutative
ring R is diagonal if a; ; = 0 whenever i # j.

3.8.2 Definition. Two matrices A, B € Mat(m, n, R) are equivalent if
there are invertible matrices C € Mat(m, m, R) and D € Mat(n,n, R)
such that A = CBD.

3.8.3 Lemma. Every matrix over a principal ideal domain is equivalent
to a diagonal matrix.

Proof. Let R be a principal ideal domain. For any elements a,b € R,
Theorem 2.8.5 demonstrates that there exists x,y € R such that
d := gcd(a,b) = ax + by. Hence, for all p, q € R, we have

a b|[x -b/d]| _
p qlly ad|

d 0 ]
px+qy (aq—bp)/d

x y|la pl _[d px+qy
—-b/d a/d||b q| |0 (aq-bp)/d
and
x =bd]_ [ x y|_ ax+by _
det[y a/d| = | —b/d a/d]_ a1

Thus, if a and b are entries in the same row (column) of a matrix B,
we can multiply B on the right (left) by an invertible matrix leaving
d in the position occupied by a, leaving 0 in the position occupied
by b, and fixing the entries not in the rows or columns of a and b.
Given a matrix A over the ring R, we multiply on the left and right
by invertible matrices to obtain a diagonal matrix. The case A = 0
is trivial, so assume that A # 0. Row and column interchanges (left
and right multiplications by suitable permutation matrices) bring a
nonzero elmement a, to the upper left corner. By a sequence of
right multiplications by invertible matrices, replace a; by a,, the
greatest common divisor of all elements in the first row, leaving
zeros in the rest of the first row. Similarly, by left multiplications,
replace a, by as, the greatest common divisor of all elements now
in the first column, leaving zeros in the rest of the first column. Con-
tinue by replacing a; by a,, the greatest common divisor of all ele-
ments now in the first row, and so on. In this manner, we generate
a sequence {(a;) 2 (a,) 2 (a;) 2 --- of ideals. Since R is a unique
factorization domain, there exists an index m such thata,,,; = a,,.
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Equivalent matrices represent the
same R-module homomorphism
under different choices bases for the
source and target.
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Working over the integers, this form
was introduced by Henry Smith (1861).

x
—b/d a/d

Each matrix over a principal ideal
domain is equivalent to an essentially
unique matrix in Smith normal form.

It follows that a,, is the greatest common divisor of the elements
in the first row (or column) and the remaining elements in the first
column (or row) are zero. Hence, by elementary row or column op-
erations, we can clear both the first row and first column, making
all elements zero except for the corner. By induction on the size of
the matrix, we can diagonalize A. O

3.8.4 Definition. An (m x n)-matrix A = [a; ;] over a commutative
ring R is in Smith normal formif itis diagonal and q; ; divides a;,; ;1
forall1<i<r<min(m,n)anda;; = 0 forall r < j < min(m, n).

3.8.5 Theorem. Every matrix over a principal ideal domain is equivalent
to a matrix in Smith normal form.

Proof. By Lemma 3.8.3, it is enough to consider a diagonal matrix.
For any elements a,b € R, Theorem 2.8.5 demonstrates that there
exists x,y € R such thatd := ged(a, b) = ax + b y. It follows that

oot - 2 e )

0 bf|1 ax/d —ab/d ab/d||1 ax/d
Repeated application of this observation allow one to convert the

diagonal matrix into a diagonal matrix with the property that the
corner element divides all the remaining elements. By induction on
the size of the matrix, we obtain a matrix in Smith normal form. O

3.8.6 Lemma. LetA andB be equivalent (mx n)-matrix over a principal
ideal domain. For all i, the ideals generated by the determinants of all
(i x i)-submatrices are equal.

Proof. For any (mxn)-matrix A and any 1 < i < min(m, n), let A;(A)
be the ideal generated by the determinants of all (i xi)-submatrices
of A. It suffices to show that, for any invertible (m x m)-matrix
C, we have A;(CA) = A;(A). The rows of CA are linear combina-
tions of the rows in A. It follows that the determinants of (i X i)-
submatrices of C A are linear combinations of the determinants of
(ixi)-submatrices of A, so A;(CA) C A;(A). Since Cis invertible, we
also have A;(A) = A;(C"'CA) C A;(CA), so A;(CA) = A;(A). O

3.8.7 Proposition. Two (mxn)-matrices A and B in Smith normal form
over a principal ideal domain are equivalent if and only if there exists a
unitu such thata;; = cb;; for each1 <i < min(m, n).

Proof. One verifiesthatA;(A) = (a;;)and A;(A) (Qi41,i+1) = Aip1(A)
for all 1 < i < min(m, n). Hence, the diagonal elements are, up to a
unit, determined by the ideals A;(A). Lemma 3.8.6 implies that two
matrices in Smith normal form are equivalent if and only if these
ideals are equal. O



3.9

Modules over a Principal Ideal Domain

Over a Euclidean domain, the Smith normal form of any matrix may

be obtained via just elementary row and columns operations. We
illustrate this process for a matrix over [F;[x]:

[4x3 +4x? —x+4 —-X*-Xx*+x
4x3 —5x +1

| X —x*+x-1

—x34+3x24+x-3
—3x3—-x2+3x+1

3x3+3x2+5
3x2 —2x2—4x+3
—2x3+x*+4x-3

+1

[4x3 +4x2 —x+ 4 —2x + 2 3x34+3x2 45

= 4x3 —5x+1 3x% — 3x 3x2—2x2—4x+3

| X} —x?+x-1 —4x?-5x-2 -2x>+x*+4x-3

[4x3 +4x2 —x + 4 x—1 3x3 +3x2+5

= 4x3 —5x +1 4x2% — 4x 3x2 —2x%2—4x+3

| X*—x?+x—-1 2x*-3x+1 -2x>+x*>+4x-3|
x—1 4x3 4+ 4x> —x+ 4 3x3+3x2+5

=| 4x2-4x 4x3 —5x +1 3x2 —2x%2—4x+3

[2x2—-3x+1 xX*—-x*+x-1 —2x*+x*+4x-3)
x—1 0 3x3 +3x2+5

=| 4x?—-4x —5x*—xX34+4x2+x+1 3x2—-2x2—4x+3

202 —3x+1 3x*-3x*+5x2+3x+3 -2x*+x*+4x-3
x—-1 0 0

=| 4x2-4x —S5x*— X3 +4x2+x+1 —x*+2x3-2x2-2x+3

[2x2 —3x+1 3x*—3x3+5x2+3x+3 5x*—5x3+4x2+5x+2

[x —1 0 0

= o0 —5x* —xX34+4x2+x+1 —x*+2x3-2x2-2x+3

| 0 3x*—3x*+5x?+3x+3 Sx*—5x+4x2+5x+2

[x —1 0 0

=| 0 —5x*—x34+4x2+x+1 —5x2+5

| 0 3x*-3x*+5x*+3x+3 3x*-3 |

[x — 1 0 0 ]

=| 0 —5x*—x3+4x’+x+1 x*-1

| 0 3x*-3x*+5x*+3x+3 —5x*+5)|

[x — 1 0 0 ]

=| 0 x2—-1 =5x*-x34+4x’+x+1

| 0 —5x?+5 3x*—3x%+5x% +3x+ 3]

[x —1 0 0

= 0 x: -1 0

| O 0 3x*+3x*-3x-3

[x — 1 0 0

=| o (x=D(x+1 0
0 0 (x = 1)(x + 1)2

3.9.1 Theorem. For any finitely generated module V over a principal

ideal domain R, there exists a unique sequencelI, 2 I, D ---

2 I, of

proper ideals in R such thatV = R/I, ® R/I, & --- ® R/I,,.
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Proof of Existence. By Corollary 3.6.4, there exists an exact sequence

0 Rm 2, Rmo 1% 0

where m; < my. Theorem 3.8.5 shows that, by choosing suitable
bases for the free modules R™ and R™o, we may assume that the
matrix M(¢) = [a, ;] is in Smith normal form. It follows that

C R g R oo R

(@i1) ~ (azz) (Amg,my)
where q;; divides a;4,;4; for all 1 < i < m,;. If g;; is a unit, then
R/{a;;) = 0is a trivial summand. Let ¢ be the largest integer such
that a,, is a unit. Setting n := m, — ¢ and I; := (Q,, ;) for all
1 £ j < n, we obtained the desired sequence of ideals in R. O

Outline for a Proof of Uniqueness. Suppose that there exists sequence
Ji2J,2 - 2J,ofideals such that V = R/J, ® R/J, @ --- & R/J,.
We first claim that m > n implies that J; = R. Setting S := R/J;, we
obtain the S-module isomorphisms

m n
R Tt I
T A AN "

j=1

IR

Hence, we can map S™ onto S”, which confirms that S = 0.
We may now assume that m = n. It suffices by symmetry to
demonstrate that I}, C J; for all 1 < k < n. For any r € I, we have

n

n
R R
—xrV w0
@(JJ . r) ijgl (Il . r)

where (K :r) ={a € R | ra € K}. Applying the first paragraph to the
R-module ¥V, we deduce that (J; : r) = (J,:r)=--=(Jr:r) =R,
so x € Jy. O

3.9.2 Definition. The torsion submodule of an R-module V is
(V) ={veV|rv=0forsomeO0#reR}.

3.9.3 Corollary. Let R be a principal ideal domain. For any finitely gen-
erated R-module V', there exists a unique nonnegative integer r such that

Vt(V)®R".

Proof. Theorem 3.9.1 gives a unique sequence I; 2 I, D --- D I, of
proper ideals in R such that V =~ R/I, ® R/I, @ --- ® R/I,,. Setting k
to be the largest integer such that I; # (0), it follows that

(V)= R/I, ®R/L, ® --- ® R/I}

and V = (V) @ R"k, O



