Problems 02 Due: Tuesday, 22 September 2020

1. Let *H* and *K* be two subgroups of a group *G*. For any element $g \in G$, the set

 $H g K := \{ f \in G \mid f = h g k \text{ for some } h \in H, k \in K \}$

is called a *double coset*.

- (i) Prove that the double cosets partition *G*.
- (ii) Do all double cosets have the same cardinality?
- (iii) When *G* has finite order, must the cardinality of a double coset divide |G|?
- **2.** Let *G* be a group and let Aut(*G*) be its automorphism group. Given an element $g \in G$, consider the map $\gamma_g : G \to G$ defined, for all $f \in G$, by $\gamma_g(f) := gfg^{-1}$.
 - (i) For all $g \in G$, show that γ_g is an automorphism.
 - (ii) Prove that the map $\Gamma : G \to \operatorname{Aut}(G)$ defined, for all $g \in G$, by $\Gamma(g) := \gamma_g$ is a group homomorphism.
 - (iii) Show that $\text{Ker}(\Gamma) = Z(G)$.
 - (iv) Prove that $Inn(G) := Im(\Gamma)$ is a normal subgroup of Aut(G).
- **3.** Fix $n \in \mathbb{N}$. Two permutations $\sigma, \tau \in \mathfrak{S}_n$ have the *same cycle structure* if, for all $k \in \mathbb{N}$, their factorizations into disjoint cycles have the same number of cycles of length k. The *cycle type* of a permutation is the list λ of cycles lengths from its factorization into disjoint cycles arranged in non-increasing order.
 - (i) For all permutations $\sigma, \tau \in \mathfrak{S}_n$, prove that the conjugate permutation $\sigma \tau \sigma^{-1}$ has the same cycle structure as τ and is obtained by applying σ to the entries in the cycles of τ .
 - (ii) Prove that two permutations are conjugate if and only if they have the same cycle type.

Remarks. If $\sigma = (4 \ 3 \ 1)(6 \ 2 \ 5)$ and $\tau = (3 \ 1)(7 \ 2 \ 4)$, then we have

 $\sigma \tau \sigma^{-1} = (\sigma(3) \sigma(1))(\sigma(7) \sigma(2) \sigma(4)) = (1 4)(7 5 3) = (4 1)(7 5 3).$

The cycle type of $(4\ 2\ 1)(5)(6)(8\ 7\ 3)(9) \in \mathfrak{S}_9$ is (3,3,1,1,1) and the cycle type of $(5\ 1)(8\ 6\ 3\ 4)(9\ 7\ 2) \in \mathfrak{S}_9$ is (4,3,2). Since every element in [n] appears in a unique cycle, the positive integers in the cycle type sum to n.

