Problems 02

Due: Tuesday, 22 September 2020

1. Let H and K be two subgroups of a group G. For any element $g \in G$, the set

$$
H g K:=\{f \in G \mid f=h g k \text { for some } h \in H, k \in K\}
$$

is called a double coset.
(i) Prove that the double cosets partition G.
(ii) Do all double cosets have the same cardinality?
(iii) When G has finite order, must the cardinality of a double coset divide $|G|$?
2. Let G be a group and let $\operatorname{Aut}(G)$ be its automorphism group. Given an element $g \in G$, consider the map $\gamma_{g}: G \rightarrow G$ defined, for all $f \in G$, by $\gamma_{g}(f):=g f g^{-1}$.
(i) For all $g \in G$, show that γ_{g} is an automorphism.
(ii) Prove that the map $\Gamma: G \rightarrow \operatorname{Aut}(G)$ defined, for all $g \in G$, by $\Gamma(g):=\gamma_{g}$ is a group homomorphism.
(iii) Show that $\operatorname{Ker}(\Gamma)=Z(G)$.
(iv) Prove that $\operatorname{Inn}(G):=\operatorname{Im}(\Gamma)$ is a normal subgroup of $\operatorname{Aut}(G)$.
3. Fix $n \in \mathbb{N}$. Two permutations $\sigma, \tau \in \mathbb{S}_{n}$ have the same cycle structure if, for all $k \in \mathbb{N}$, their factorizations into disjoint cycles have the same number of cycles of length k. The cycle type of a permutation is the list λ of cycles lengths from its factorization into disjoint cycles arranged in non-increasing order.
(i) For all permutations $\sigma, \tau \in \mathbb{S}_{n}$, prove that the conjugate permutation $\sigma \tau \sigma^{-1}$ has the same cycle structure as τ and is obtained by applying σ to the entries in the cycles of τ.
(ii) Prove that two permutations are conjugate if and only if they have the same cycle type.

Remarks. If $\sigma=(431)(625)$ and $\tau=(31)(724)$, then we have

$$
\sigma \tau \sigma^{-1}=(\sigma(3) \sigma(1))(\sigma(7) \sigma(2) \sigma(4))=(14)(753)=(41)(753) .
$$

The cycle type of $(421)(5)(6)(873)(9) \in \mathbb{S}_{9}$ is $(3,3,1,1,1)$ and the cycle type of $(51)(8634)(972) \in \mathfrak{S}_{9}$ is $(4,3,2)$. Since every element in $[n]$ appears in a unique cycle, the positive integers in the cycle type sum to n.

