Problems 03 Due: Tuesday, 29 September 2020

- **1.** Let *G* be a group. The **commutator** of two elements *f* and *g* in *G* is the element $[f,g] := f^{-1}g^{-1}fg$. The **commutator subgroup** *G*' of *G* is the subgroup generated by all the commutators of elements of *G*: $G' := \langle f^{-1}g^{-1}fg | f,g \in G \rangle$.
 - (i) Show that G' is a normal subgroup of G and the quotient group G/G' is abelian.
 - (ii) Let $\pi : G \to G/G'$ be the canonical group homomorphism and let A be an abelian group. Show that every group homomorphism $\varphi : G \to A$ factors as $\varphi = \varphi' \circ \pi$ where $\varphi' : G/G' \to A/A'$ is the induced group homomorphism.
 - (iii) Show that a subgroup H of G contains G' if and only if H is normal and G/H is abelian.
- **2.** Let $m\mathbb{Z}$ be the subgroup of integers \mathbb{Z} generated by m and let \overline{r} denote the left coset in the quotient group $\mathbb{Z}/m\mathbb{Z}$ containing the integer r. Consider the set

 $(\mathbb{Z}/m\mathbb{Z})^{\times} := \{\overline{r} \in \mathbb{Z}/m\mathbb{Z} \mid \gcd(r, m) = 1\}.$

- (i) Show that multiplication of integers induces a group structure on $(\mathbb{Z}/m\mathbb{Z})^{\times}$.
- (ii) The **totient** $\phi(n)$ of a positive integer *n* is defined to be the number of positive integers less than or equal to *n* that are coprime to *n*. When gcd(r, m) = 1, prove that $r^{\phi(m)} \equiv 1 \pmod{m}$.
- (iii) For any prime number *p* and any integer *r*, prove that $r^p \equiv r \pmod{p}$.
- **3.** The *icosahedral group I* consists of the rotational symmetries of a regular dodecahedron. It acts transitively on the vertices, edges and faces, and |I| = 60.
 - (i) Determine the number of elements in *I* of each order.
 - (ii) Determine the cardinality of each conjugacy class in *I*.
 - (iii) Show that *I* is a simple group (i.e. it has no nontrivial normal subgroups).

