Problems 04
 Due: Tuesday, 06 October 2020

1. Let p be a prime number. Prove that a group of order $2 p$ is either cyclic or dihedral.
2. Prove that there are no simple groups of order 80,96 , or 1000 .
3. Let $\widehat{\mathbb{C}}:=\mathbb{C} \cup\{\infty\}$ denote the extended complex plane. Consider the two functions $f, g: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ defined by $f(z):=z+2$ and $g(z):=z /(2 z+1)$ respectively.
(i) Prove that f and g are bijections and hence elements of the symmetric group on $\widehat{\mathbb{C}}$.
(ii) Show that any nonzero power of f maps the interior of the unit circle $|z|=1$ to the exterior. Similarly, show that any nonzero power of g maps the exterior of the unit circle to the punctured interior (a point is removed from the interior).
(iii) Prove that the subgroup of the symmetric group on $\widehat{\mathbb{C}}$ generated by functions f and g is free.
