Problems 05 Due: Tuesday, 13 October 2020

- **1.** Define \mathbb{F}_4 to be all (2×2) -matrices of the form $\begin{bmatrix} a & b \\ b & a+b \end{bmatrix}$ where $a, b \in \mathbb{Z}/\langle 2 \rangle$.
 - (i) Prove that \mathbb{F}_4 is a commutative ring under the usual matrix operations.
 - (ii) Prove that \mathbb{F}_4 is a field with exactly four elements.
- **2.** Let *R* be a commutative ring. An element $r \in R$ is *nilpotent* if $r^n = 0$ for some positive integer *n*.
 - (i) For any nilpotent element $r \in R$, then prove that 1 r is a unit in R.
 - (ii) Prove the set of all nilpotent elements in *R* is an ideal.
- **3.** (i) Let *R* be a commutative ring and consider two elements $f, g \in R$. Show that the canonical image of fg in the quotient ring $R/\langle f f^2g \rangle$ is an idempotent. Give an example where this idempotent is distinct from 0 and 1.
 - (ii) Let *R* and *S* be two rings and let φ and ψ be ring homomorphisms from *R* to *S*. Is the set of $f \in R$ such that $\varphi(f) = \psi(f)$ a subring of *R*?

