Problems 05

Due: Tuesday, 13 October 2020

1. Define \mathbb{F}_{4} to be all (2×2)-matrices of the form $\left[\begin{array}{cc}a & b \\ b & a+b\end{array}\right]$ where $a, b \in \mathbb{Z} /\langle 2\rangle$.
(i) Prove that \mathbb{F}_{4} is a commutative ring under the usual matrix operations.
(ii) Prove that \mathbb{F}_{4} is a field with exactly four elements.
2. Let R be a commutative ring. An element $r \in R$ is nilpotent if $r^{n}=0$ for some positive integer n.
(i) For any nilpotent element $r \in R$, then prove that $1-r$ is a unit in R.
(ii) Prove the set of all nilpotent elements in R is an ideal.
3. (i) Let R be a commutative ring and consider two elements $f, g \in R$. Show that the canonical image of $f g$ in the quotient ring $R /\left\langle f-f^{2} g\right\rangle$ is an idempotent. Give an example where this idempotent is distinct from 0 and 1.
(ii) Let R and S be two rings and let φ and ψ be ring homomorphisms from R to S. Is the set of $f \in R$ such that $\varphi(f)=\psi(f)$ a subring of R ?
