Problems 06
 Due: Tuesday, 20 October 2020

1. Let $R:=\mathcal{C}([0,1])$ be the commutative ring of continuous real-valued functions on the closed interval $[0,1]$ in \mathbb{R}. For all subsets $X \subseteq[0,1]$, define

$$
\mathbf{I}(X):=\{f \in R \mid f(x)=0 \text { for all } x \in X\} .
$$

(i) Prove that $\mathbf{I}(X)$ is an ideal of R.
(ii) For any point $p \in[0,1]$, set $I_{p}:=\mathbf{I}(\{p\})$. Prove that I_{p} is a maximal ideal of R and we have the isomorphism $R / I_{p} \cong \mathbb{R}$.
(iii) For all subsets $J \subseteq R$, set $\mathbf{V}(J):=\{x \in[0,1] \mid f(x)=0$ for all $f \in J\}$. Prove that $\mathbf{V}(J)$ is a closed subset of the interval $[0,1]$.
(iv) If I is a proper ideal of R, then show that $\mathbf{V}(I) \neq \varnothing$.
(v) Prove that any maximal ideal of R is equal to I_{p} for some $p \in[0,1]$.
2. Solve the following system of simultaneous congruences in $\mathbb{Q}[x]$:

$$
f(x) \equiv-3 \quad(\bmod x+1), \quad f(x) \equiv 12 x \quad\left(\bmod x^{2}-2\right), \quad f(x) \equiv-4 x \quad\left(\bmod x^{3}\right) .
$$

3. For any field K, let $K((x))$ be ring of formal Laurent series with coefficients in K :

$$
K((x)):=\left\{\sum_{j=m}^{\infty} a_{n} x^{n} \mid a_{n} \in K, m \in \mathbb{Z} \text { is arbitrary }\right\}
$$

where the ring operations are defined as in the ring of formal power series $K[[x]]$. Prove that $K((x))$ is isomorphic to the fields of fractions for the domain $K[[x]]$.

