Problems 08
 Due: Tuesday, 10 November 2020

1. Factor $x^{4}+1$ into irreducibles in $\mathbb{F}_{2}[x], \mathbb{F}_{7}[x], \mathbb{F}_{13}[x], \mathbb{F}_{17}[x]$, and $\mathbb{Q}[x]$.
2. (i) Determine all of the monic irreducible polynomials of degree 3 over \mathbb{F}_{3}.
(ii) Prove that

$$
\frac{\mathbb{F}_{3}[x]}{\left\langle x^{3}-x-1\right\rangle} \cong \frac{\mathbb{F}_{3}[x]}{\left\langle x^{3}-x^{2}+x+1\right\rangle} .
$$

3. Consider $f:=\operatorname{det}\left[\begin{array}{ll}x & w \\ y & z\end{array}\right] \in \mathbb{Z}[w, x, y, z]$.
(i) Prove that $\langle f\rangle$ is a prime ideal in $\mathbb{Z}[w, x, y, z]$.
(ii) Prove that $\mathbb{Z}[w, x, y, z] /\langle f\rangle$ is not a unique factorization domain.
