Problems 09 Due: Tuesday, 17 November 2020

- **1.** A module is *simple* if it is not the zero module and if it has no proper submodule.
 - (i) Let *V* be a simple *R*-module. Show that *V* is cyclic.
 - (ii) Prove *Schur's Lemma*: If $\varphi : V \to W$ is a homomorphism of simple *R*-modules, then either φ is zero or an isomorphism.
 - (iii) Prove that the set of endomorphisms, denoted $\operatorname{End}_R(V) := \operatorname{Hom}_R(V, V)$, of a simple *R*-module *V* forms a field; multiplication is given by composition of functions and addition is defined pointwise.
- **2.** Let *R* be domain and let *V* be an *R*-module. An element $v \in V$ is a **torsion element** if $Ann(v) \neq 0$; in other words, $v \in V$ is a torsion element if and only if there is an $0 \neq r \in R$ such that rv = 0. Let $\tau(V)$ be the set of torsion elements of *V*. A module *V* is **torsion** if $\tau(V) = V$ and it is **torsion-free** if $\tau(V) = 0$.
 - (i) Show that $\tau(V)$ is a submodule of V.
 - (ii) Show that $V/\tau(V)$ is torsion-free.
 - (iii) For any *R*-module homomorphism $\varphi : V \to W$, show that $\varphi(\tau(V)) \subseteq \tau(W)$.
 - (iv) Give an example of an infinite abelian group that is a torsion \mathbb{Z} -module.
- **3.** (i) Let $\varphi : V' \to V$ and $\psi : V \to V''$ two *R*-module homomorphisms. Prove that the sequence

$$(\ddagger) \qquad \qquad V' \xrightarrow{\varphi} V \xrightarrow{\psi} V'' \longrightarrow 0$$

is exact if and only if, for every R-module W, the sequence

- $(\bigstar) \qquad 0 \longrightarrow \operatorname{Hom}_{R}(V'', W) \xrightarrow{\operatorname{Hom}_{R}(\psi, W)} \operatorname{Hom}_{R}(V, W) \xrightarrow{\operatorname{Hom}_{R}(\varphi, W)} \operatorname{Hom}_{R}(V', W)$ is exact.
 - (ii) Show that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/\langle m \rangle, \mathbb{Z}/\langle n \rangle) \cong \mathbb{Z}/\langle d \rangle$ where $d := \operatorname{gcd}(m, n)$.

