Problems 10 Due: Tuesday, 24 November 2020

1. Let \mathbb{F}_q be a finite field with q elements.

- (i) For any nonnegative integer *n*, determine the number of elements in the \mathbb{F}_q -vector space \mathbb{F}_q^n .
- (ii) Let $GL(n, \mathbb{F}_q)$ denote the group of all invertible $(n \times n)$ -matrices over the field \mathbb{F}_q . Determine the order of the group $GL(n, \mathbb{F}_q)$.
- (iii) Let $SL(n, \mathbb{F}_q)$ denote the subgroup of $GL(n, \mathbb{F}_q)$ consisting of matrices having determinant 1. Find the order of the group $SL(n, \mathbb{F}_q)$.
- **2.** Let $R := \mathbb{Z}/\langle 30 \rangle$. Show that in the matrix

$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 3 \end{bmatrix} \in \operatorname{Mat}(2, 3, R),$$

the rows are linearly independent, but any two columns are linearly dependent.

- **3.** Let U, V and W be three vector spaces and $\varphi : U \to V, \psi : V \to W$ two linear maps. A linear map φ has *finite index* if both Ker(φ) and Coker(φ) are finite-dimensional. The number ind(φ) := dim Ker(φ) – dim Coker(φ) is the *index* of φ .
 - (i) Prove that U decomposes into a direct sum of $\text{Ker}(\varphi)$ and two subspaces U', U'' such that $\text{Ker}(\psi \circ \varphi) = \text{Ker}(\varphi) \oplus U'$ and $\text{Im}(\psi \circ \varphi) = \psi(\varphi(U''))$.
 - (ii) Prove that if two of the three linear maps φ , ψ and $\psi \circ \varphi$ are of finite index, then so is the third and $ind(\psi \circ \varphi) = ind(\varphi) + ind(\psi)$.

Do not assume that U, V, and W are finite-dimensional.

