Problems 10

Due: Tuesday, 24 November 2020

1. Let \mathbb{F}_{q} be a finite field with q elements.
(i) For any nonnegative integer n, determine the number of elements in the \mathbb{F}_{q}-vector space \mathbb{F}_{q}^{n}.
(ii) Let GL(n, \mathbb{F}_{q}) denote the group of all invertible $(n \times n)$-matrices over the field \mathbb{F}_{q}. Determine the order of the group $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$.
(iii) Let $\operatorname{SL}\left(n, \mathbb{F}_{q}\right)$ denote the subgroup of $\operatorname{GL}\left(n, \mathbb{F}_{q}\right)$ consisting of matrices having determinant 1 . Find the order of the $\operatorname{group} \operatorname{SL}\left(n, \mathbb{F}_{q}\right)$.
2. Let $R:=\mathbb{Z} /\langle 30\rangle$. Show that in the matrix

$$
\left[\begin{array}{rrr}
1 & 1 & -1 \\
0 & 2 & 3
\end{array}\right] \in \operatorname{Mat}(2,3, R),
$$

the rows are linearly independent, but any two columns are linearly dependent.
3. Let U, V and W be three vector spaces and $\varphi: U \rightarrow V, \psi: V \rightarrow W$ two linear maps. A linear map φ has finite index if both $\operatorname{Ker}(\varphi)$ and $\operatorname{Coker}(\varphi)$ are finite-dimensional. The number ind $(\varphi):=\operatorname{dim} \operatorname{Ker}(\varphi)-\operatorname{dim} \operatorname{Coker}(\varphi)$ is the index of φ.
(i) Prove that U decomposes into a direct sum of $\operatorname{Ker}(\varphi)$ and two subspaces U^{\prime}, $U^{\prime \prime}$ such that $\operatorname{Ker}(\psi \circ \varphi)=\operatorname{Ker}(\varphi) \oplus U^{\prime}$ and $\operatorname{Im}(\psi \circ \varphi)=\psi\left(\varphi\left(U^{\prime \prime}\right)\right)$.
(ii) Prove that if two of the three linear maps φ, ψ and $\psi \circ \varphi$ are of finite index, then so is the third and $\operatorname{ind}(\psi \circ \varphi)=\operatorname{ind}(\varphi)+\operatorname{ind}(\psi)$.
Do not assume that U, V, and W are finite-dimensional.

