Problems 11
 Due: Tuesday, 1 December 2020

1. Consider the ring $\mathbb{Q}[x]$. Find a basis for the submodule of $\mathbb{Q}[x]^{3}$ generated by

$$
f_{1}=\left[\begin{array}{c}
2 x-1 \\
x \\
x^{2}+3
\end{array}\right], \quad f_{2}=\left[\begin{array}{c}
x \\
x \\
x^{2}
\end{array}\right], \quad \text { and } \quad f_{3}=\left[\begin{array}{c}
x+1 \\
2 x \\
2 x^{2}-3
\end{array}\right] .
$$

2. Consider the integer matrix

$$
\mathbf{B}:=\left[\begin{array}{rrrr}
-1 & 5 & -8 & 7 \\
2 & 8 & -2 & 4 \\
1 & -11 & 32 & -13
\end{array}\right] .
$$

(i) Find matrices $\mathbf{Q} \in \operatorname{Mat}(3,3, \mathbb{Z})$ and $\mathbf{P} \in \operatorname{Mat}(4,4, \mathbb{Z})$ such that $\mathbf{Q} \mathbf{B} \mathbf{P}$ is in Smith normal form.
(ii) Let G be an abelian group with four generators g_{1}, g_{2}, g_{3} and g_{4} subject to the relations

$$
\begin{aligned}
-g_{1}+5 g_{2}-8 g_{3}+7 g_{4} & =0 \\
2 g_{1}+8 g_{2}-2 g_{3}+4 g_{4} & =0 \\
g_{1}-11 g_{2}+32 g_{3}-13 g_{4} & =0
\end{aligned}
$$

Show that $G \cong \mathbb{Z} /\langle 6\rangle \oplus \mathbb{Z} /\langle 54\rangle \oplus \mathbb{Z}$. In addition, find new generators h_{1}, h_{2} and h_{3} such that $6 h_{1}=0,54 h_{2}=0$ and h_{3} has infinite order.
(iii) Find all $\mathbf{X} \in \operatorname{Mat}(3,1, \mathbb{Z})$ such that $\mathbf{B} \mathbf{X}=\mathbf{C}$ where $\mathbf{C}:=\left[\begin{array}{r}-5 \\ 100 \\ -7\end{array}\right]$.
3. Consider the matrix

$$
\mathbf{A}:=\left[\begin{array}{rrrr}
-2 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
2 & 0 & 1 & -2 \\
-1 & 0 & 0 & 0
\end{array}\right]
$$

(i) Find the minimal polynomial of \mathbf{A}.
(ii) Find the rational canonical form of \mathbf{A}.
(iii) Find the Jordan canonical form of \mathbf{A}.

