Problems 12 Due: Tuesday, 8 December 2020

- **1.** In any category C, provide a direct prove for each of the following:
 - (i) The composition of two epimorphisms is an epimorphism.
 - (ii) If the composition of two morphisms is an epimorphism, then the second morphism is an epimorphism.
 - (iii) Every isomorphism is both an epimorphism and a monomorphism.
- **2.** A *poset* is a set *P* with a binary relation \leq_P which is reflexive, transitive and antisymmetric. More precisely, for all *x*, *y*, *z* \in *P*, we have the following:

(reflexivity) The relation $x \leq_P x$ holds.

(transitivity) The relations $x \leq_P y$ and $y \leq_P z$ imply that $x \leq_P z$.

(antisymmetry) The relations $x \leq_P y$ and $y \leq_P x$ imply that x = y.

A function $f : P \to Q$ between two posets is **order-preserving** if, for all $x, y \in P$ satisfying $x \leq_P y$, we have $f(x) \leq_Q f(y)$.

- (i) Show that the collection of posets together with order-preserving functions form a category.
- (ii) In the category of posets, give an example of a bijective morphism between non-isomorphic posets.
- **3.** Let *G* be a group. The **center** of *G*, denoted Z(G), is the set of elements in *G* that commute with every element in *G*. The **commutator** of two elements *g* and *h* in *G* is the element $[g,h] := g^{-1}h^{-1}gh$. The **commutator subgroup** *G*' of *G* is the subgroup generated by all the commutators of elements in *G*.
 - (i) Show that the assignment $G \mapsto Z(G)$ does *not* give a functor from Grp to Ab.
 - (ii) Show that $G \mapsto G/G'$ does give a functor from the category of groups to the category of abelian groups.

