Solutions 04

- **1.** Let *G* be a group. The **commutator** of the elements *f* and *g* in *G* is the element $[f,g] := f^{-1}g^{-1}fg$ in *G*. The **commutator subgroup** $G^{(1)}$ of *G* is the subgroup generated by all commutators; $G^{(1)} := \langle f^{-1}g^{-1}fg | f, g \in G \rangle$.
 - *i*. Prove that $G^{(1)}$ is a normal subgroup and the quotient group $G/G^{(1)}$ is abelian.
 - *ii.* Let $\pi: G \to G/G^{(1)}$ be the canonical group homomorphism. For any abelian group A, demonstrate that every group homomorphism $\varphi: G \to A$ factors as $\varphi = \varphi^{(1)} \circ \pi$ where $\varphi^{(1)}: G/G^{(1)} \to A/A^{(1)}$ is the induced group homomorphism.
 - *iii.* Show that a subgroup H of G contains $G^{(1)}$ if and only if H is normal and G/H is abelian.

Solution. Since $[f,g] := f^{-1}g^{-1}fg$ for any elements f and g in G, the elements f and g commute if and only if we have [f,g] = e.

i. Since $[f,g]^{-1} = (f^{-1}g^{-1}fg)^{-1} = g^{-1}f^{-1}gf = [g,f]$, each element of $G^{(1)}$ is a product of commutators. For any element *h* in *G* and any element [f,g] in $G^{(1)}$, we have

$$\begin{split} h[f,g]h^{-1} &= hf^{-1}g^{-1}fgh^{-1} = hf^{-1}h^{-1}hg^{-1}h^{-1}hfh^{-1}hgh^{-1} \\ &= (hfh^{-1})^{-1}(hgh^{-1})^{-1}(hfh^{-1})(hgh^{-1}) = [hfh^{-1},hgh^{-1}], \end{split}$$

so $G^{(1)}$ is a normal subgroup of G. For any two cosets $f G^{(1)}$ and $h G^{(1)}$ in $G/G^{(1)}$, it follows that

$$[f G^{(1)}, h G^{(1)}] = (f G^{(1)})^{-1} (h G^{(1)})^{-1} (f G^{(1)}) (h G^{(1)})$$

= $f^{-1} h^{-1} f h G^{(1)} = [f, h] G^{(1)} = G^{(1)},$

so the quotient group $G/G^{(1)}$ is abelian.

- *ii.* As *A* is any abelian group, we have $A^{(1)} = \langle e \rangle$, so $A/A^{(1)} = A$. Because the image under the group homomorphism φ of a commutator in group *G* is a commutator in abelian group *A*, we see that $\varphi(G^{(1)}) = \langle e \rangle = A^{(1)}$. The First Isomorphism Theorem shows that the induced map $\varphi^{(1)} : G/G^{(1)} \to A/A^{(1)} = A$, defined, for any element *h* in *G*, by $\varphi^{(1)}(h G^{(1)}) = \varphi(h)$, is a group homomorphism and $\varphi = \varphi^{(1)} \circ \pi$.
- *iii.* Suppose that *H* is a subgroup of *G* containing the commutator subgroup $G^{(1)}$. Since $G/G^{(1)}$ is abelian, the quotient group $H/G^{(1)}$ is a normal subgroup of the quotient $G/G^{(1)}$. The Correspondence Theorem establishes that *H* is a normal subgroup of *G*. Hence, the Third Isomorphism Theorem demonstrates that $G/H \cong (G/G^{(1)})/(H/G^{(1)})$, so we conclude that G/H is also abelian.

Conversely, suppose that *H* is normal subgroup of *G* and the quotient *G*/*H* is abelian. For any elements *f* and *g* in *G*, we have (fH)(gH) = (gH)(fH), which means fgH = gfH and $g^{-1}f^{-1}gf = [g, f] \in H$. Therefore, we deduce that $G^{(1)} \subseteq H$.

- **2.** Let $\langle m \rangle$ be the subgroup of integers \mathbb{Z} generated by *m* and let $[r] := r \langle m \rangle$ denote the left coset in the quotient group $\mathbb{Z}/\langle m \rangle$ containing the integer *r*. Consider the set $(\mathbb{Z}/\langle m \rangle)^{\times} := \{\overline{r} \in \mathbb{Z}/\langle m \rangle \mid \gcd(r, m) = 1\}.$
 - *i*. Demonstrate that multiplication of integers induces a group structure on the set $(\mathbb{Z}/\langle m \rangle)^{\times}$.
 - *ii.* The **totient** $\phi(n)$ of a positive integer *n* is defined to be the number of positive integers less than or equal to *n* that are coprime to *n*. When gcd(r, m) = 1, establish that $r^{\phi(m)} \equiv 1 \mod m$.
 - *iii*. For any prime number *p* and any integer *r*, prove that $r^p \equiv r \mod p$.

Solution.

- *i*. Since multiplication of integers is associative and commutative with 1 as the identity, it induces an associative commutative binary operation on $\mathbb{Z}/\langle m \rangle$ with $\overline{1} := \langle m \rangle$ as an identity. When gcd(r, m) = 1 and gcd(r', m) = 1, there exists integers u, v, v', and v' such that ru + mv = 1 and r'u' + mv' = 1. Hence, we obtain rr'(uu') + m(r'vu' + v') = r'(ru + mv)u' + mv' = r'u' + mv' = 1, which implies that gcd(rr', m) = 1. Thus, multiplication of integers induces an associative commutative binary operation on $(\mathbb{Z}/\langle m \rangle)^{\times}$ with $\overline{1}$ has an identity. Finally, the equation ru + mv = 1 implies that $\overline{ru} = \overline{1}$ in $\mathbb{Z}/\langle m \rangle$, so each element of $(\mathbb{Z}/\langle m \rangle)^{\times}$ has an inverse. Therefore, the set $(\mathbb{Z}/\langle m \rangle)^{\times}$ is a group with respect to multiplication.
- *ii*. From the definition of the totient function, we see that the order of the group $(\mathbb{Z}/\langle m \rangle)^{\times}$ is $\phi(m)$. From the Lagrange Theorem, we deduce that $\overline{r}^{\phi(m)} = \overline{1}$ for all $\overline{r} \in (\mathbb{Z}/\langle m \rangle)^{\times}$. In other words, we have $r^{\phi(m)} \equiv 1 \mod m$.
- *iii.* For any prime number p, we have $\phi(p) = p 1$. When $r \equiv 0 \mod p$, it follows that $r^p \equiv r \mod p$. Otherwise, we have $r \not\equiv 0 \mod p$ and gcd(r, p) = 1 because p is prime. In this case, part *ii* yields $r^{p-1} \equiv 1 \mod p$. Multiplying by r gives $r^p \equiv r \mod p$.
- **3.** The *icosahedral group I* consists of the rotational symmetries of a regular dodecahedron. It acts transitively on the vertices, edges, and faces. Moreover, we have |I| = 60.
 - *i*. Determine the number of elements in *I* of each order.
 - *ii.* Determine the cardinality of each conjugacy class in *I*.
 - *iii*. Show that *I* is a simple group (i.e. it has no nontrivial normal subgroups).

Solution.

i. The icosahedral group *I* contains rotations by multiples of $2\pi/5$ about the centres of the faces, rotations by multiples of $2\pi/3$ about the vertices, and rotations by π about the centres of the edges. Each of the 20 vertices has a stabilizer of order 3. Since the opposite vertices have the same stabilizer, there are 10 subgroup of order 3. Each subgroup of order 3 contains two elements of order 3 and the intersection of any two of these subgroups consists of the identity, so *I* contains (10)(2) = 20 elements of order 3. Similarly, the faces have stabilizers of order 5, and there are six such stabilizers, giving (6)(4) = 24 elements of order 5. There are 15 stabilizers of edges and these stabilizers have

order 2, so there are (15)(1) = 15 elements of order two. Finally the identity is the unique element of order 1. Since 60 = 1 + 15 + 20 + 24, we have listed all the elements of the group.

- *ii*. As conjugate elements have the same order, we consider four cases:
 - The identity is the unique element in its conjugacy class.
 - Since the edges form a single *I*-orbit, the stabilizers of the edges are conjugate subgroups. It follows that the nontrivial elements in these subgroups form one conjugacy class of cardinality 15.
 - Consider a counterclockwise rotation x by $2\pi/3$ about a vertex v. Let v' be the opposite vertex and let x' be the counterclockwise rotation by $2\pi/3$ about v'. Since the vertices form a single *I*-orbit, their stabilizers are conjugate subgroups, so x and x' are conjugate. Moreover, the counterclockwise rotation x about v is the same as the clockwise rotation by $2\pi/3$ about the opposite vertex v'. Thus $x^2 = x'$, so x and x^2 are conjugate. Hence, all the elements of order 3 are conjugate.
 - By considering the opposite face, a similar argument establishes that the 12 rotations by $2\pi/5$ and $-2\pi/5$ are conjugate. They are not conjugate to the remaining 12 rotations by $4\pi/5$ and $-4\pi/5$, because the order of a conjugacy class divides the order of the group and 24 does not divide 60. Thus, there are two conjugacy classes of elements of order 5.

Therefore, the class equation for *I* is 60 = 1 + 15 + 20 + 12 + 12.

iii. Since a normal subgroup contains all the conjugates of its elements, a normal subgroup is a union of conjugacy classes. In particular, the order of a normal subgroup is the sum of some of the terms on the right side of the class equation including the term 1. It follows that a nontrivial normal subgroup of I must have order: 13, 16, 21, 25, 28, 33, 36, 40, 45, or 48. However, the Lagrange Theorem implies that the order of normal subgroup divides the order of the group. Therefore, the group I is simple.

