
Solutions 05
1. Let 𝑝 be a prime number. Prove that a group of order 2𝑝 is either cyclic or dihedral.

Solution. From our classification of groups of small order, we know that a group
of order 4 is either the cyclic group ℤ/⟨4⟩ or the dihedral group ℤ/⟨2⟩ ×ℤ/⟨2⟩, so we
may assume that 𝑝 is an odd prime.

Suppose that 𝐺 is a group of order 2𝑝. We first show that 𝐺 is generated by
two elements. The number 𝑛𝑝 of Sylow 𝑝‑subgroups satisfies 2 ≡ 0 mod 𝑛𝑝 and
𝑛𝑝 ≡ 1 mod 𝑝, so we see that 𝑛𝑝 = 1. Hence, 𝐺 has a unique Sylow 𝑝‑subgroup 𝐾
and𝐾 is normal. Since |𝐾| = 𝑝 and 𝑝 is prime, the subgroup𝐾 is cyclic. Choose an
element𝑓 in𝐺 such that𝐾 = ⟨𝑓⟩. Let𝐻 be a Sylow 2‑subgroup of𝐺. Since |𝐻| = 2,
we may choose an element 𝑔 in𝐺 such that𝐻 = ⟨𝑔⟩. The elements in𝐾 have order
1 or 𝑝 and the elements in 𝐻 have order 1 or 2, so we have 𝐻 ∩𝐾 = {𝑒}. It follows
that every element in the product 𝐾𝐻 has a unique expression as a product 𝑓𝑖𝑔𝑗
where 0 ⩽ 𝑖 < 𝑝 and 0 ⩽ 𝑗 < 2. Thus, we obtain 𝐺 = 𝐾𝐻 = ⟨𝑓, 𝑔⟩.

We analyse the relations among these generators of the group 𝐺. Our choice of
𝑓 and 𝑔 yields the relations 𝑓𝑝 = 𝑒 and 𝑔2 = 𝑒. The normality of 𝐾 implies that
there exists 0 ⩽ 𝑟 < 𝑝 such that 𝑔𝑓𝑔−1 = 𝑓𝑟. Using these relations, we obtain

𝑓 = 𝑔2𝑓𝑔−2 = 𝑔(𝑔𝑓𝑔−1)𝑔 = 𝑔𝑓𝑟𝑔−1

= (𝑔𝑓𝑔−1)(𝑔𝑓𝑔−1)⋯(𝑔𝑓𝑔−1)⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
𝑟‑times

= (𝑓𝑟)(𝑓𝑟)⋯(𝑓𝑟)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
𝑟‑times

= 𝑓𝑟⋅𝑟 = 𝑓𝑟2 .

It follows that 𝑟2 ≡ 1 mod 𝑝 which means 𝑟 is 1 or 𝑝 − 1. We have two cases:
(𝑟 = 1) We see that 𝑔𝑓𝑔−1 = 𝑓 and 𝑔𝑓 = 𝑓𝑔. Hence, 𝐺 is an abelian group and
𝐺 ≅ 𝐾 ×𝐻 ≅ ℤ/⟨𝑝⟩ × ℤ/⟨2⟩. Since gcd(2, 𝑝) = 1, we also have 𝐺 = ⟨𝑓𝑔⟩ ≅ ℤ/⟨2𝑝⟩.

(𝑟 = 𝑝 − 1) It follows that 𝑔𝑓𝑔−1 = 𝑓−1 and, for all positive integers 𝑚, we obtain
𝑔𝑓𝑚𝑔−1 = (𝑔𝑓𝑔−1)(𝑔𝑓𝑔−1)⋯(𝑔𝑓𝑔−1)⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟

𝑚‑times

= (𝑓−1)(𝑓−1)⋯(𝑓−1)⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
𝑚‑times

= 𝑓−𝑚 .

In particular, by choosing 0 < 𝑚 < 𝑝 such that 3𝑚 ≡ 1 mod 𝑝, we have the
relation 𝑔𝑓𝑚𝑔−1 = 𝑓−𝑚 = 𝑓2𝑚 = (𝑓𝑚)2. Let ℎ = 𝑓𝑚. Since 𝑝 is a prime number,
we have 𝐾 = ⟨ℎ⟩ and

𝐺 = {𝑔𝑖ℎ𝑗 || 0 ⩽ 𝑖 < 2, 0 ⩽ 𝑗 < 𝑝, 𝑔2 = 𝑒, ℎ𝑝 = 𝑒, ℎ𝑔 = ℎ2𝑔} = 𝐷𝑝 .
Therefore, 𝐺 isomorphic to the cyclic group ℤ/⟨2𝑝⟩ or the dihedral group 𝐷𝑝. □

2. Prove that there are no simple groups of order 80, 96, or 1000.

Solution. Suppose that 𝐺 is a simple group of order 80 = 24 ⋅ 5. The number 𝑛5
of Sylow 5‑subgroups satisfies both 16 ≡ 0 mod 𝑛5 and 𝑛5 ≡ 1 mod 5. Because 𝐺
does not have a normal subgroup, we must have 𝑛5 ≠ 1 which means that 𝑛5 = 16.
Hence, the number of elements of order 5 is (16)(4) = 64. Similarly, the number𝑛2
of Sylow 2‑subgroups also satisfies 5 ≡ 0 mod 𝑛2 and 𝑛2 ≡ 1 mod 2. Since 𝑛2 ≠ 1,
we have 𝑛2 = 5. The number of elements of order 2𝑖 with 𝑖 > 1 is (5)(15) = 75, but
75 + 64 > 80 is a contradiction. Therefore, there is no simple group of order 80.
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Suppose that 𝐺 is a simple group of order 96 = 24 ⋅ 3. Let 𝑃 denote a Sylow
2‑subgroup, so [𝐺 ∶ 𝑃] = 3. Left multiplication of 𝐺 on coset space 𝐺/𝑃 gives a
group homomorphism 𝜑∶𝐺 → 𝔖𝐺/𝑃 ≅ 𝔖3 and the kernel Ker(𝜑) is a subgroup
of 𝑃. Since 𝐺 is simple, we must have Ker(𝜑) = {𝑒}, so the map 𝜑 is injective.
Hence, the First Isomorphism Theorem establishes that 𝜑(𝐺) is a subgroup of 𝔖3.
However, the inequality |𝐺| = 96 > 6 = |𝔖3| provides a contradiction. Thus, we
conclude that there is no simple group of order 96.

Let 𝐺 be a group of order 1000 = 23 ⋅ 53. The number 𝑛5 of Sylow 5‑subgroups
satisfies 8 ≡ 0 mod 𝑛5 and 𝑛5 ≡ 1 mod 5. It follows that 𝑛5 = 1 and the unique
Sylow 5‑subgroup is normal. Therefore, there is no simple group of order 1000. □

3. Let ℂ̂∶= ℂ⊔{∞} be the extended complex plane. Consider the functions𝑓∶ ℂ̂ → ℂ̂
and 𝑔∶ ℂ̂ → ℂ̂ defined by 𝑓(𝑧)∶= 𝑧 + 2 and 𝑔(𝑧)∶= 𝑧/(2𝑧 + 1) respectively.

i. Prove that the functions 𝑓 and 𝑔 are bijections and, thereby, elements of the
symmetric group on the set ℂ̂.

ii. Show that any nonzero power of 𝑓 maps the interior of the unit circle |𝑧| = 1 to
the exterior. Similarly, show that any nonzero power of 𝑔 maps the exterior of
the unit circle to the punctured interior (a point is removed from the interior).

iii. Demonstrate that the subgroup of the symmetric group on ℂ̂ generated by
functions 𝑓 and 𝑔 is free.

Solution.
i. Since 𝑓(𝑧) − 2 = 𝑧 = 𝑓(𝑧 + 2) and

𝑔(𝑧)
1 − 2𝑔(𝑧) =

𝑧
2𝑧+1

1 − 2𝑧
2𝑧+1

= 𝑧 =
𝑧

1−2𝑧
2𝑧

1−2𝑧 + 1
= 𝑔( 𝑧

1 − 2𝑧) ,

we see that 𝑓−1(𝑧) = 𝑧 − 2 and 𝑔−1(𝑧) = 𝑧/(1 − 2𝑧). Hence, the functions 𝑓
and 𝑔 are bijections and, thereby, elements of the symmetric group on ℂ̂.

ii. Since 𝑓𝑛(𝑧) = 𝑧 + 2𝑛 for any integer 𝑛, the inequality |𝑧| < 1 implies that, for
any nonzero integer 𝑛, we have

||𝑓𝑛(𝑧)|| = |𝑧 + 2𝑛| = ||2𝑛 − (−𝑧)|| ⩾ 2 |𝑛| − |𝑧| ⩾ 2 |𝑛| − 1 ⩾ 1 .
Hence, any nonzero power of 𝑓 maps the interior of the unit circle |𝑧| = 1 to
the exterior. Observe that the function 𝑓 fixes the point ∞.

For any integer 𝑛, induction shows that 𝑔𝑛(𝑧) = 𝑧/(2𝑛𝑧 + 1). Moreover,
observe that 𝑔𝑛(−1/2𝑛) = ∞ and 𝑔𝑛(∞) = 1/2𝑛. For any nonzero integer 𝑛, the
inequality |𝑧| > 1 yields 1/ |𝑧| < 1 and

||𝑔𝑛(𝑧)|| = |𝑧|
|2𝑛𝑧 + 1| ⩽

1
|| 1|𝑧| − 2 |𝑛|||

< 1 ,

so any nonzero power of 𝑔maps the exterior of the unit circle to the punctured
interior.

iii. Let 𝐺∶= ⟨𝑓, 𝑔⟩ denote the subgroup of the symmetric group on the set ℂ̂ gen‑
erated by the functions 𝑓 and 𝑔 and let 𝐹 be the free group generated by two
elements. The universal mapping property for free groups gives a surjective
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group homomorphism 𝜑∶ 𝐹 → 𝐺. The kernel of 𝜑 contains all reduced words
in {𝑓, 𝑔}which equal the identity map idℂ̂. However, part ii implies that no non‑
trivial reduced word in {𝑓, 𝑔} can equal the identity map. Therefore, the map
𝜑 is injective and 𝐹 ≅ 𝐺. □
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