Solutions 06

1. Let \mathbb{F}_4 denote the set of all (2×2) -matrices of the form

$$
\begin{bmatrix} a & b \\ b & a+b \end{bmatrix}
$$

- where *a* and *b* are elements in the commutative ring $\mathbb{Z}/\langle 2 \rangle$.
- *i*. Establish that \mathbb{F}_4 is a commutative ring under the usual matrix operations.
- *ii*. Demonstrate that \mathbb{F}_4 is a field with exactly four elements.

Solution.

i. Ⅿatrices over a commutative ring form a noncommutative ring—as addition of matrices is defined entrywise, matrices over a commutative ring clearly form an additive abelian group. Similarly, matrix multiplication is both associative and distributive, and the identity matrix is the multiplicative identity.

Since the identity matrix belongs to \mathbb{F}_4 , it suffices to show \mathbb{F}_4 is commutative and closed under both addition and multiplication. For any elements a, b, c, d in the commutative ring $\mathbb{Z}/\langle 2 \rangle$, we have

$$
\begin{bmatrix} a & b \\ b & a+b \end{bmatrix} + \begin{bmatrix} c & d \\ d & c+d \end{bmatrix} = \begin{bmatrix} a+c & b+d \\ b+d & (a+c)+(b+d) \end{bmatrix} \in \mathbb{F}_4
$$

\n
$$
\begin{bmatrix} a & b \\ b & a+b \end{bmatrix} \begin{bmatrix} c & d \\ d & c+d \end{bmatrix} = \begin{bmatrix} ac+bd & ad+bc+bd \\ ad+bc+bd & (ac+bd)+(ad+bc+bd) \end{bmatrix} \in \mathbb{F}_4
$$

\n
$$
\begin{bmatrix} c & d \\ d & c+d \end{bmatrix} \begin{bmatrix} a & b \\ b & a+b \end{bmatrix} = \begin{bmatrix} ac+bd & ad+bc+bd \\ ad+bc+bd & (ac+bd)+(ad+bc+bd) \end{bmatrix}
$$

which shows that \mathbb{F}_4 is a commutative ring.

ii. Since $|\mathbb{Z}/\langle 2 \rangle| = 2$, there are four elements in \mathbb{F}_4 , namely

 $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, and $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. Because we have $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

it follows that every nonzero element is a unit, so \mathbb{F}_4 is a field. $\hfill \square$

- **2.** Let R be a commutative ring. An element r in R is **nilpotent** if $r^n = 0$ for some positive integer n .
	- *i.* For any nilpotent element r in \overline{R} , prove that $1 r$ is a unit in \overline{R} .
	- $ii.$ Prove the set of all nilpotent elements in *is an ideal.*

Solution.

i. As the ring element r is nilpotent, there exists a positive integer n such that $r^n = 0$. It follows that

$$
(1 - r)(1 + r + r2 + \dots + rn-1) = (1 + r + r2 + \dots + rn-1) - (r + r2 + r3 + \dots + rn)
$$

= 1 + rⁿ = 1,

so the element $1 - r$ is a unit.

ii. For a nilpotent element f in R, there is a positive integer *n* such that $f^n = 0$. For any *a* in *R*, we have $(a f)^n = a^n f^n = a^n 0 = 0$, so af is also nilpotent. Suppose that g in R is also nilpotent. Hence, there exists a positive integer m such that $g^m = 0$. The binomial formula implies that

$$
(f+g)^{n+m-1} = \sum_{k=0}^{n+m-1} {n+m-1 \choose k} f^k g^{n+m-1-k}.
$$

Since we cannot have both $k < n$ and $n + m - 1 - k < m$, each term in this sum vanishes, so we deduce that $(f + g)^{n+m-1} = 0$. We conclude that the set of nilpotent elements in R forms an ideal. \Box

- **3.** *i.* Let R be a commutative ring and consider elements f and g in R . Show that the canonical image of the product fg in the quotient ring $R/(f - f^2g)$ is an idempotent. Give an example where this idempotent is distinct from 0 and 1.
	- *ii.* Let R and S be commutative rings and let $\varphi: R \to S$ and $\psi: R \to S$ be ring homomorphisms. Is the set of all elements f in R such that $\varphi(f) = \psi(f)$ a subring of *?*

Solution.

i. Set $I := \langle f - f^2 g \rangle$. Since $fg - f^2 g^2 = g(f - f^2 g) \in I$, the canonical image of the product fg equals the canonical image of $f^2g^2=(fg)^2$ in $R/I.$ In particular, the element fg is an idempotent.

Consider $R = \mathbb{Z}$, $f = 2$, and $g = 3$. It follows that

$$
\frac{R}{\langle f - f^2 g \rangle} \cong \frac{\mathbb{Z}}{\langle 10 \rangle}
$$

and $fg = 6$ is an idempotent distinct from 0 and 1. Similarly, consider $R = \mathbb{C}[x]$ and $f = x = g$. It follows that

$$
\frac{R}{\langle f - f^2 g \rangle} \cong \frac{\mathbb{C}[x]}{\langle x - x^3 \rangle} \cong \frac{\mathbb{C}[x]}{\langle x(x - 1)(x + 1) \rangle} \cong \frac{\mathbb{C}[x]}{\langle x \rangle} \times \frac{\mathbb{C}[x]}{\langle x - 1 \rangle} \times \frac{\mathbb{C}[x]}{\langle x + 1 \rangle} \cong \mathbb{C} \times \mathbb{C} \times \mathbb{C}
$$

and x^2 is an idempotent distinct from 0 and 1.

ii. Set $T := \{ f \in R \mid \varphi(f) = \psi(f) \}$. Since $\varphi(1_R) = 1_S = \psi(1_R)$, we see that $1_R \in T$. For any \hat{f} and g in T, we have

$$
\varphi(f+g) = \varphi(f) + \varphi(g) = \psi(f) + \psi(g) = \psi(f+g)
$$

$$
\varphi(fg) = \varphi(f)\,\varphi(g) = \psi(f)\,\psi(g) = \psi(fg)
$$

so subset T is closed under multiplication and addition. Therefore, the set T is a subring of R. \Box

