Solutions 08

- 1. Euclid proves that there are infinitely many prime integers in the following way: if $p_1, p_2, ..., p_k$ are prime numbers, then any prime factor of the integer $1+p_1\, p_2 \cdots p_k$ must be different from p_i for all $1\leqslant i\leqslant k.$
	- *i.* Adapt this argument to demonstrate that, for any field K , there are infinitely many monic irreducible polynomials in $K[x]$.
	- *ii.* Explain why the argument fails for the formal power series ring $K[[x]]$ over a field K .
	- *iii.* Adapt this argument to show that the set of prime integers of the form $4n 1$ is infinite.

Solution.

- $i.$ Consider a nonempty finite set $\{f_1,f_2,...,f_k\}$ of monic irreducible polynomials in $K[x]$. Since the principal ideal domain $K[x]$ is a unique factorization domain, the polynomial $1 + f_1 f_2 \cdots f_k$, which is not a unit, is a product of a unit and monic irreducible polynomials. Any monic irreducible factor is necessarily distinct from all the f_j , because otherwise it would divide 1. No finite set of monic irreducible polynomials contains all monic irreducible polynomials, so the set of monic irreducible polynomials in $K[x]$ is infinite.
- *ii.* This style of argument fails in formal power series ring $K[[x]]$; given irreducible formal power series $f_1, f_2, ...$, f_k in $K[[x]],$ the formal power series $1\!+\!f_1\,f_2\,\cdots f_k$ is typically a unit, so not divisible by any irreducible elements.
- *iii.* By considering remainders upon division by 4, we see that every prime integer, except for 2, has the form $4n \pm 1$ for some nonnegative integer *n*. Suppose that there are only finitely many primes numbers $p_1, p_2, ...$, p_k of the form 4 $n-1.$ The number $m := 4(p_1 p_2 \cdots p_k) - 1$ is a product of prime numbers. Because the product of two primes having the form $4n + 1$ also has the form $4n + 1$, the odd number *m* must be divisible by at least one prime of the form $4n - 1$. This prime factor of m is necessarily distinct from $p_1, p_2, ..., p_k$, as otherwise it would divide -1 . We conclude that the set of prime integers of the form $4n-1$ is infinite. \Box
- 2. Let R be a principal ideal domain and let K be its field of fractions.
	- *i.* Suppose $R = \mathbb{Z}$. Write $r = 7/24 \in \mathbb{Q}$ in the form $r = a/8 + b/3$.
	- *ii.* Consider $g := pq$ in R where p and q are relatively prime. Prove that every fraction $f/g \in K$ can be written in the form

$$
\frac{f}{g} = \frac{a}{q} + \frac{b}{p}
$$

for some a and b in R .

iii. Let *k* be a positive integer and let $g := p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k}$ be the factorization of the element g in R into irreducible elements $p_1, p_2, ...$, p_k such that the relation $p_i = u p_j$ for some unit u in R implies that $i = j$. Prove that every fraction

$$
\bigcirc \, \bullet \, \bullet \, \bullet
$$

 $r = f/g \in K$ can be written in the form

$$
r = \sum_{i=1}^k \frac{h_i}{p_i^{m_i}}
$$

for some h_i in R for all $1 \leq i \leq k$.

Solution.

i. Since $(-1)(8) + (3)(3) = 1$, we have

$$
r = \frac{7}{24} = \frac{7[(-1)(8) + (3)(3)]}{24} = \frac{-7}{3} + \frac{21}{8}.
$$

ii. As gcd $(p, q) = 1$, there exists u and v in R such that $pu + qv = 1$. Hence, we have

$$
r = \frac{f}{g} = \frac{f(pu + qv)}{pq} = \frac{fu}{q} + \frac{fv}{p}.
$$

iii. We proceed by induction on k . The base case $(k = 1)$ is trivially true. For the inductive step, set $p := p_1^{m_1}$ and $q := p_2^{m_2} p_3^{m_3} \cdots p_k^{m_k}$ $k_{k}^{m_k}$. By hypothesis, we have $\gcd(p, q) = 1$, so there exists u and v in R such that $pu + qv = 1$. Hence, we obtain

$$
r = \frac{f}{g} = \frac{f(pu + qv)}{pq} = \frac{fu}{q} + \frac{fv}{p} = \frac{fu}{p_1^{m_1}} + \frac{fv}{p_2^{m_2}p_3^{m_3}\cdots p_k^{m_k}}.
$$

The induction hypothesis establishes that

$$
\frac{fv}{p_2^{m_2}p_3^{m_3}\cdots p_k^{m_k}} = \sum_{i=2}^k \frac{h_i}{p_i^{m_i}}
$$

for some h_i in R. Setting $h_1 := fu$, we obtain $r = \sum_{i=1}^k h_i/p_i^{m_i}$ as required.

3. Let R be a unique factorization domain such that the sum of two principal ideals in R is again a principal ideal. Prove that R is a principal ideal domain.

Solution. We first prove that every finitely-generated ideal in R is principal. We proceed by induction on the number *n* of generators for an ideal. When $n \leq 1$, the ideal is trivially principal. Assume that any ideal in R generated by less than n generators is principal. Consider an ideal I generated by the elements $g_1, g_2, ... , g_n$ in R. The induction hypothesis implies that there exists an element h_{n-1} in R such that $\langle g_1, g_2, ..., g_{n-1} \rangle = \langle h_{n-1} \rangle$, so $I = \langle h_{n-1}, g_n \rangle = \langle h_{n-1} \rangle + \langle g_n \rangle$. Since the sum of two principal ideals in R is again principal, there is an element h_n in R such that

$$
\langle h_n \rangle = \langle h_{n-1} \rangle + \langle g_n \rangle = \langle g_1, g_2, \dots, g_{n-1} \rangle + \langle g_n \rangle = \langle g_1, g_2, \dots, g_n \rangle = I
$$

which completes the induction.

We next show that every ideal in *is finitely generated. Suppose that an ideal* in *is not finitely generated. Hence, there exists an infinite increasing chain*

$$
\langle f_0 \rangle \subset \langle f_0, f_1 \rangle \subset \langle f_0, f_1, f_2 \rangle \subset \langle f_0, f_1, f_2, f_3 \rangle \subset \cdots
$$

of ideals in R . Since every finitely-generated ideal in R is principal, we obtain an infinite increasing chain $\langle g_0\rangle\subset\langle g_1\rangle\subset\langle g_2\rangle\subset\langle g_3\rangle\subset\cdots$ of principal ideals such that

MATH 893 : 2024 **page 2 of 3**

 $\langle g_j\rangle=\langle f_0,f_1,...,f_j\rangle$. The proper containment $\langle g_j\rangle\subset\langle g_{j+1}\rangle$ means that g_j is equal to the product of g_{j+1} and a nonzero nonunit in $R.$ As R is a unique factorization domain, there exists a unit u in R and irreducible elements $q_1, q_2, ... \, , q_m$ in R such that $g_0 = u q_1 q_2 \cdots q_m$. It follows that there are only finitely many nonunits in R that divide g_0 ; at most the number of proper subsets of $\{q_1, q_2, ... \, , q_m\}$ which equals $2^m - 1$. In other words, we cannot have an infinite increasing chain of principal ideals in *R* containing $\langle g_0 \rangle$. We conclude that every ideal in *R* is finitely generated and, therefore, principal. and, therefore, principal.

