
Solutions 08
1. Euclid proves that there are infinitely many prime integers in the following way: if
𝑝1, 𝑝2, … , 𝑝𝑘 are prime numbers, then any prime factor of the integer 1+𝑝1 𝑝2⋯𝑝𝑘
must be different from 𝑝𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑘.

i. Adapt this argument to demonstrate that, for any field 𝐾, there are infinitely
many monic irreducible polynomials in 𝐾[𝑥].

ii. Explain why the argument fails for the formal power series ring 𝐾[[𝑥]] over a
field 𝐾.

iii. Adapt this argument to show that the set of prime integers of the form 4𝑛 − 1
is infinite.

Solution.
i. Consider a nonempty finite set {𝑓1, 𝑓2, … , 𝑓𝑘} of monic irreducible polynomials

in 𝐾[𝑥]. Since the principal ideal domain 𝐾[𝑥] is a unique factorization do‑
main, the polynomial 1 + 𝑓1 𝑓2 ⋯ 𝑓𝑘, which is not a unit, is a product of a unit
and monic irreducible polynomials. Any monic irreducible factor is necessar‑
ily distinct from all the 𝑓𝑗, because otherwise it would divide 1. No finite set of
monic irreducible polynomials contains all monic irreducible polynomials, so
the set of monic irreducible polynomials in 𝐾[𝑥] is infinite.

ii. This style of argument fails in formal power series ring𝐾[[𝑥]]; given irreducible
formal power series𝑓1, 𝑓2, … , 𝑓𝑘 in𝐾[[𝑥]], the formal power series 1+𝑓1 𝑓2 ⋯𝑓𝑘
is typically a unit, so not divisible by any irreducible elements.

iii. By considering remainders upon division by 4, we see that every prime integer,
except for 2, has the form 4𝑛±1 for some nonnegative integer 𝑛. Suppose that
there are only finitely many primes numbers 𝑝1, 𝑝2, … , 𝑝𝑘 of the form 4𝑛 − 1.
The number 𝑚∶= 4(𝑝1 𝑝2 ⋯ 𝑝𝑘) − 1 is a product of prime numbers. Because
the product of two primes having the form 4𝑛 + 1 also has the form 4𝑛 + 1,
the odd number 𝑚 must be divisible by at least one prime of the form 4𝑛 − 1.
This prime factor of 𝑚 is necessarily distinct from 𝑝1, 𝑝2, … , 𝑝𝑘, as otherwise it
would divide −1. We conclude that the set of prime integers of the form 4𝑛−1
is infinite. □

2. Let 𝑅 be a principal ideal domain and let 𝐾 be its field of fractions.
i. Suppose 𝑅 = ℤ. Write 𝑟 = 7/24 ∈ ℚ in the form 𝑟 = 𝑎/8 + 𝑏/3.

ii. Consider 𝑔 ∶= 𝑝𝑞 in 𝑅 where 𝑝 and 𝑞 are relatively prime. Prove that every
fraction 𝑓/𝑔 ∈ 𝐾 can be written in the form

𝑓
𝑔 = 𝑎

𝑞 + 𝑏
𝑝

for some 𝑎 and 𝑏 in 𝑅.
iii. Let 𝑘 be a positive integer and let 𝑔 ∶= 𝑝𝑚1

1 𝑝𝑚2
2 ⋯𝑝𝑚𝑘

𝑘 be the factorization of
the element 𝑔 in 𝑅 into irreducible elements 𝑝1, 𝑝2, … , 𝑝𝑘 such that the relation
𝑝𝑖 = 𝑢𝑝𝑗 for some unit 𝑢 in 𝑅 implies that 𝑖 = 𝑗. Prove that every fraction
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𝑟 = 𝑓/𝑔 ∈ 𝐾 can be written in the form

𝑟 =
𝑘
∑
𝑖=1

ℎ𝑖
𝑝𝑚𝑖
𝑖

for some ℎ𝑖 in 𝑅 for all 1 ⩽ 𝑖 ⩽ 𝑘.

Solution.
i. Since (−1)(8) + (3)(3) = 1, we have

𝑟 = 7
24 = 7[(−1)(8) + (3)(3)]

24 = −7
3 + 21

8 .

ii. As gcd(𝑝, 𝑞) = 1, there exists 𝑢 and 𝑣 in 𝑅 such that 𝑝𝑢 + 𝑞𝑣 = 1. Hence, we
have

𝑟 = 𝑓
𝑔 = 𝑓(𝑝𝑢 + 𝑞𝑣)

𝑝𝑞 = 𝑓𝑢
𝑞 + 𝑓𝑣

𝑝 .

iii. We proceed by induction on 𝑘. The base case (𝑘 = 1) is trivially true. For the
inductive step, set 𝑝 ∶= 𝑝𝑚1

1 and 𝑞 ∶= 𝑝𝑚2
2 𝑝𝑚3

3 ⋯ 𝑝𝑚𝑘
𝑘 . By hypothesis, we have

gcd(𝑝, 𝑞) = 1, so there exists 𝑢 and 𝑣 in 𝑅 such that 𝑝𝑢 + 𝑞𝑣 = 1. Hence, we
obtain

𝑟 = 𝑓
𝑔 = 𝑓(𝑝𝑢 + 𝑞𝑣)

𝑝𝑞 = 𝑓𝑢
𝑞 + 𝑓𝑣

𝑝 = 𝑓𝑢
𝑝𝑚1
1

+ 𝑓𝑣
𝑝𝑚2
2 𝑝𝑚3

3 ⋯ 𝑝𝑚𝑘
𝑘

.

The induction hypothesis establishes that

𝑓𝑣
𝑝𝑚2
2 𝑝𝑚3

3 ⋯ 𝑝𝑚𝑘
𝑘

=
𝑘
∑
𝑖=2

ℎ𝑖
𝑝𝑚𝑖
𝑖

for some ℎ𝑖 in 𝑅. Setting ℎ1∶= 𝑓𝑢, we obtain 𝑟 =
𝑘
∑
𝑖=1

ℎ𝑖/𝑝𝑚𝑖
𝑖 as required. □

3. Let 𝑅 be a unique factorization domain such that the sum of two principal ideals
in 𝑅 is again a principal ideal. Prove that 𝑅 is a principal ideal domain.

Solution. We first prove that every finitely‑generated ideal in 𝑅 is principal. We
proceed by induction on the number 𝑛 of generators for an ideal. When 𝑛 ⩽ 1,
the ideal is trivially principal. Assume that any ideal in 𝑅 generated by less than 𝑛
generators is principal. Consider an ideal 𝐼 generated by the elements 𝑔1, 𝑔2, … , 𝑔𝑛
in𝑅. The induction hypothesis implies that there exists an element ℎ𝑛−1 in𝑅 such
that ⟨𝑔1, 𝑔2, … , 𝑔𝑛−1⟩ = ⟨ℎ𝑛−1⟩, so 𝐼 = ⟨ℎ𝑛−1, 𝑔𝑛⟩ = ⟨ℎ𝑛−1⟩ + ⟨𝑔𝑛⟩. Since the sum of
two principal ideals in 𝑅 is again principal, there is an element ℎ𝑛 in 𝑅 such that

⟨ℎ𝑛⟩ = ⟨ℎ𝑛−1⟩ + ⟨𝑔𝑛⟩ = ⟨𝑔1, 𝑔2, … , 𝑔𝑛−1⟩ + ⟨𝑔𝑛⟩ = ⟨𝑔1, 𝑔2, … , 𝑔𝑛⟩ = 𝐼
which completes the induction.

We next show that every ideal in 𝑅 is finitely generated. Suppose that an ideal
in 𝑅 is not finitely generated. Hence, there exists an infinite increasing chain

⟨𝑓0⟩ ⊂ ⟨𝑓0, 𝑓1⟩ ⊂ ⟨𝑓0, 𝑓1, 𝑓2⟩ ⊂ ⟨𝑓0, 𝑓1, 𝑓2, 𝑓3⟩ ⊂ ⋯
of ideals in 𝑅. Since every finitely‑generated ideal in 𝑅 is principal, we obtain an
infinite increasing chain ⟨𝑔0⟩ ⊂ ⟨𝑔1⟩ ⊂ ⟨𝑔2⟩ ⊂ ⟨𝑔3⟩ ⊂ ⋯ of principal ideals such that
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⟨𝑔𝑗⟩ = ⟨𝑓0, 𝑓1, … , 𝑓𝑗⟩. The proper containment ⟨𝑔𝑗⟩ ⊂ ⟨𝑔𝑗+1⟩ means that 𝑔𝑗 is equal
to the product of 𝑔𝑗+1 and a nonzero nonunit in 𝑅. As 𝑅 is a unique factorization
domain, there exists a unit 𝑢 in 𝑅 and irreducible elements 𝑞1, 𝑞2, … , 𝑞𝑚 in 𝑅 such
that 𝑔0 = 𝑢𝑞1 𝑞2⋯𝑞𝑚. It follows that there are only finitely many nonunits in 𝑅
that divide 𝑔0; at most the number of proper subsets of {𝑞1, 𝑞2, … , 𝑞𝑚}which equals
2𝑚 − 1. In other words, we cannot have an infinite increasing chain of principal
ideals in 𝑅 containing ⟨𝑔0⟩. We conclude that every ideal in 𝑅 is finitely generated
and, therefore, principal. □
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